File size: 21,950 Bytes
6a04f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
2022-10-01 00:23:25,105 ----------------------------------------------------------------------------------------------------
2022-10-01 00:23:25,107 Model: "SequenceTagger(
  (embeddings): StackedEmbeddings(
    (list_embedding_0): TransformerWordEmbeddings(
      (model): BertModel(
        (embeddings): BertEmbeddings(
          (word_embeddings): Embedding(119547, 768, padding_idx=0)
          (position_embeddings): Embedding(512, 768)
          (token_type_embeddings): Embedding(2, 768)
          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (dropout): Dropout(p=0.1, inplace=False)
        )
        (encoder): BertEncoder(
          (layer): ModuleList(
            (0): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (1): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (2): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (3): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (4): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (5): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (6): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (7): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (8): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (9): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (10): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (11): BertLayer(
              (attention): BertAttention(
                (self): BertSelfAttention(
                  (query): Linear(in_features=768, out_features=768, bias=True)
                  (key): Linear(in_features=768, out_features=768, bias=True)
                  (value): Linear(in_features=768, out_features=768, bias=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
                (output): BertSelfOutput(
                  (dense): Linear(in_features=768, out_features=768, bias=True)
                  (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                  (dropout): Dropout(p=0.1, inplace=False)
                )
              )
              (intermediate): BertIntermediate(
                (dense): Linear(in_features=768, out_features=3072, bias=True)
                (intermediate_act_fn): GELUActivation()
              )
              (output): BertOutput(
                (dense): Linear(in_features=3072, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (pooler): BertPooler(
          (dense): Linear(in_features=768, out_features=768, bias=True)
          (activation): Tanh()
        )
      )
    )
    (list_embedding_1): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.5, inplace=False)
        (encoder): Embedding(275, 100)
        (rnn): LSTM(100, 1024)
        (decoder): Linear(in_features=1024, out_features=275, bias=True)
      )
    )
    (list_embedding_2): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.5, inplace=False)
        (encoder): Embedding(275, 100)
        (rnn): LSTM(100, 1024)
        (decoder): Linear(in_features=1024, out_features=275, bias=True)
      )
    )
  )
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (embedding2nn): Linear(in_features=2816, out_features=2816, bias=True)
  (linear): Linear(in_features=2816, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2022-10-01 00:23:25,114 ----------------------------------------------------------------------------------------------------
2022-10-01 00:23:25,115 Corpus: "Corpus: 70000 train + 15000 dev + 15000 test sentences"
2022-10-01 00:23:25,115 ----------------------------------------------------------------------------------------------------
2022-10-01 00:23:25,115 Parameters:
2022-10-01 00:23:25,116  - learning_rate: "0.010000"
2022-10-01 00:23:25,116  - mini_batch_size: "8"
2022-10-01 00:23:25,116  - patience: "3"
2022-10-01 00:23:25,116  - anneal_factor: "0.5"
2022-10-01 00:23:25,116  - max_epochs: "2"
2022-10-01 00:23:25,116  - shuffle: "True"
2022-10-01 00:23:25,117  - train_with_dev: "False"
2022-10-01 00:23:25,117  - batch_growth_annealing: "False"
2022-10-01 00:23:25,117 ----------------------------------------------------------------------------------------------------
2022-10-01 00:23:25,117 Model training base path: "c:\Users\Ivan\Documents\Projects\Yoda\NER\model\flair\src\..\models\mix_trans_word"
2022-10-01 00:23:25,117 ----------------------------------------------------------------------------------------------------
2022-10-01 00:23:25,118 Device: cuda:0
2022-10-01 00:23:25,118 ----------------------------------------------------------------------------------------------------
2022-10-01 00:23:25,118 Embeddings storage mode: cpu
2022-10-01 00:23:25,119 ----------------------------------------------------------------------------------------------------
2022-10-01 00:25:10,652 epoch 1 - iter 875/8750 - loss 0.52734710 - samples/sec: 66.36 - lr: 0.010000
2022-10-01 00:26:56,050 epoch 1 - iter 1750/8750 - loss 0.40571165 - samples/sec: 66.45 - lr: 0.010000
2022-10-01 00:28:42,758 epoch 1 - iter 2625/8750 - loss 0.33981350 - samples/sec: 65.63 - lr: 0.010000
2022-10-01 00:30:27,826 epoch 1 - iter 3500/8750 - loss 0.29553411 - samples/sec: 66.66 - lr: 0.010000
2022-10-01 00:32:13,605 epoch 1 - iter 4375/8750 - loss 0.26472648 - samples/sec: 66.21 - lr: 0.010000
2022-10-01 00:33:58,962 epoch 1 - iter 5250/8750 - loss 0.24119392 - samples/sec: 66.47 - lr: 0.010000
2022-10-01 00:35:44,264 epoch 1 - iter 6125/8750 - loss 0.22350560 - samples/sec: 66.50 - lr: 0.010000
2022-10-01 00:37:29,676 epoch 1 - iter 7000/8750 - loss 0.20938707 - samples/sec: 66.43 - lr: 0.010000
2022-10-01 00:39:17,828 epoch 1 - iter 7875/8750 - loss 0.19801233 - samples/sec: 64.75 - lr: 0.010000
2022-10-01 00:41:05,621 epoch 1 - iter 8750/8750 - loss 0.18900810 - samples/sec: 64.98 - lr: 0.010000
2022-10-01 00:41:05,624 ----------------------------------------------------------------------------------------------------
2022-10-01 00:41:05,624 EPOCH 1 done: loss 0.1890 - lr 0.010000
2022-10-01 00:43:16,083 Evaluating as a multi-label problem: False
2022-10-01 00:43:16,227 DEV : loss 0.06317088007926941 - f1-score (micro avg)  0.9585
2022-10-01 00:43:17,308 BAD EPOCHS (no improvement): 0
2022-10-01 00:43:17,309 saving best model
2022-10-01 00:43:18,885 ----------------------------------------------------------------------------------------------------
2022-10-01 00:45:00,373 epoch 2 - iter 875/8750 - loss 0.09938527 - samples/sec: 69.02 - lr: 0.010000
2022-10-01 00:46:39,918 epoch 2 - iter 1750/8750 - loss 0.09782604 - samples/sec: 70.36 - lr: 0.010000
2022-10-01 00:48:19,288 epoch 2 - iter 2625/8750 - loss 0.09732946 - samples/sec: 70.50 - lr: 0.010000
2022-10-01 00:49:56,913 epoch 2 - iter 3500/8750 - loss 0.09652202 - samples/sec: 71.76 - lr: 0.010000
2022-10-01 00:51:35,781 epoch 2 - iter 4375/8750 - loss 0.09592801 - samples/sec: 70.86 - lr: 0.010000
2022-10-01 00:53:12,838 epoch 2 - iter 5250/8750 - loss 0.09478132 - samples/sec: 72.17 - lr: 0.010000
2022-10-01 00:54:49,247 epoch 2 - iter 6125/8750 - loss 0.09405506 - samples/sec: 72.65 - lr: 0.010000
2022-10-01 00:56:26,656 epoch 2 - iter 7000/8750 - loss 0.09270363 - samples/sec: 71.90 - lr: 0.010000
2022-10-01 00:58:04,050 epoch 2 - iter 7875/8750 - loss 0.09222568 - samples/sec: 71.92 - lr: 0.010000
2022-10-01 00:59:41,351 epoch 2 - iter 8750/8750 - loss 0.09155321 - samples/sec: 71.98 - lr: 0.010000
2022-10-01 00:59:41,359 ----------------------------------------------------------------------------------------------------
2022-10-01 00:59:41,360 EPOCH 2 done: loss 0.0916 - lr 0.010000
2022-10-01 01:01:38,941 Evaluating as a multi-label problem: False
2022-10-01 01:01:39,054 DEV : loss 0.04371843859553337 - f1-score (micro avg)  0.9749
2022-10-01 01:01:40,056 BAD EPOCHS (no improvement): 0
2022-10-01 01:01:40,058 saving best model
2022-10-01 01:01:42,979 ----------------------------------------------------------------------------------------------------
2022-10-01 01:01:42,986 loading file c:\Users\Ivan\Documents\Projects\Yoda\NER\model\flair\src\..\models\mix_trans_word\best-model.pt
2022-10-01 01:01:46,879 SequenceTagger predicts: Dictionary with 13 tags: O, S-brand, B-brand, E-brand, I-brand, S-size, B-size, E-size, I-size, S-color, B-color, E-color, I-color
2022-10-01 01:03:40,258 Evaluating as a multi-label problem: False
2022-10-01 01:03:40,388 0.9719	0.9777	0.9748	0.951
2022-10-01 01:03:40,389 
Results:
- F-score (micro) 0.9748
- F-score (macro) 0.9624
- Accuracy 0.951

By class:
              precision    recall  f1-score   support

       brand     0.9779    0.9849    0.9814     11779
        size     0.9780    0.9821    0.9800      3125
       color     0.9249    0.9264    0.9256      1915

   micro avg     0.9719    0.9777    0.9748     16819
   macro avg     0.9603    0.9644    0.9624     16819
weighted avg     0.9719    0.9777    0.9748     16819

2022-10-01 01:03:40,391 ----------------------------------------------------------------------------------------------------