Added loggings
Browse files- README.md +2 -1
- training.log +408 -0
README.md
CHANGED
@@ -4,8 +4,9 @@ language:
|
|
4 |
license: isc
|
5 |
library_name: flair
|
6 |
tags:
|
7 |
-
- token-classification
|
8 |
- flair
|
|
|
|
|
9 |
metrics:
|
10 |
- f1
|
11 |
- precision
|
|
|
4 |
license: isc
|
5 |
library_name: flair
|
6 |
tags:
|
|
|
7 |
- flair
|
8 |
+
- token-classification
|
9 |
+
- sequence-tagger-model
|
10 |
metrics:
|
11 |
- f1
|
12 |
- precision
|
training.log
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-10-01 00:23:25,105 ----------------------------------------------------------------------------------------------------
|
2 |
+
2022-10-01 00:23:25,107 Model: "SequenceTagger(
|
3 |
+
(embeddings): StackedEmbeddings(
|
4 |
+
(list_embedding_0): TransformerWordEmbeddings(
|
5 |
+
(model): BertModel(
|
6 |
+
(embeddings): BertEmbeddings(
|
7 |
+
(word_embeddings): Embedding(119547, 768, padding_idx=0)
|
8 |
+
(position_embeddings): Embedding(512, 768)
|
9 |
+
(token_type_embeddings): Embedding(2, 768)
|
10 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
11 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
12 |
+
)
|
13 |
+
(encoder): BertEncoder(
|
14 |
+
(layer): ModuleList(
|
15 |
+
(0): BertLayer(
|
16 |
+
(attention): BertAttention(
|
17 |
+
(self): BertSelfAttention(
|
18 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
21 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
22 |
+
)
|
23 |
+
(output): BertSelfOutput(
|
24 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
25 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
26 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
27 |
+
)
|
28 |
+
)
|
29 |
+
(intermediate): BertIntermediate(
|
30 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
31 |
+
(intermediate_act_fn): GELUActivation()
|
32 |
+
)
|
33 |
+
(output): BertOutput(
|
34 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
35 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
36 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
(1): BertLayer(
|
40 |
+
(attention): BertAttention(
|
41 |
+
(self): BertSelfAttention(
|
42 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
45 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
46 |
+
)
|
47 |
+
(output): BertSelfOutput(
|
48 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
49 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
50 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
51 |
+
)
|
52 |
+
)
|
53 |
+
(intermediate): BertIntermediate(
|
54 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
55 |
+
(intermediate_act_fn): GELUActivation()
|
56 |
+
)
|
57 |
+
(output): BertOutput(
|
58 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
59 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
60 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
61 |
+
)
|
62 |
+
)
|
63 |
+
(2): BertLayer(
|
64 |
+
(attention): BertAttention(
|
65 |
+
(self): BertSelfAttention(
|
66 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
69 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
70 |
+
)
|
71 |
+
(output): BertSelfOutput(
|
72 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
73 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
74 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
(intermediate): BertIntermediate(
|
78 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
79 |
+
(intermediate_act_fn): GELUActivation()
|
80 |
+
)
|
81 |
+
(output): BertOutput(
|
82 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
83 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
84 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
85 |
+
)
|
86 |
+
)
|
87 |
+
(3): BertLayer(
|
88 |
+
(attention): BertAttention(
|
89 |
+
(self): BertSelfAttention(
|
90 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
93 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
94 |
+
)
|
95 |
+
(output): BertSelfOutput(
|
96 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
97 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
98 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
99 |
+
)
|
100 |
+
)
|
101 |
+
(intermediate): BertIntermediate(
|
102 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
103 |
+
(intermediate_act_fn): GELUActivation()
|
104 |
+
)
|
105 |
+
(output): BertOutput(
|
106 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
107 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
108 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
109 |
+
)
|
110 |
+
)
|
111 |
+
(4): BertLayer(
|
112 |
+
(attention): BertAttention(
|
113 |
+
(self): BertSelfAttention(
|
114 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
117 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
118 |
+
)
|
119 |
+
(output): BertSelfOutput(
|
120 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
121 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
122 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
123 |
+
)
|
124 |
+
)
|
125 |
+
(intermediate): BertIntermediate(
|
126 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
127 |
+
(intermediate_act_fn): GELUActivation()
|
128 |
+
)
|
129 |
+
(output): BertOutput(
|
130 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
131 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
132 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
133 |
+
)
|
134 |
+
)
|
135 |
+
(5): BertLayer(
|
136 |
+
(attention): BertAttention(
|
137 |
+
(self): BertSelfAttention(
|
138 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
141 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
142 |
+
)
|
143 |
+
(output): BertSelfOutput(
|
144 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
145 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
146 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
147 |
+
)
|
148 |
+
)
|
149 |
+
(intermediate): BertIntermediate(
|
150 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
151 |
+
(intermediate_act_fn): GELUActivation()
|
152 |
+
)
|
153 |
+
(output): BertOutput(
|
154 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
155 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
156 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
157 |
+
)
|
158 |
+
)
|
159 |
+
(6): BertLayer(
|
160 |
+
(attention): BertAttention(
|
161 |
+
(self): BertSelfAttention(
|
162 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
165 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
166 |
+
)
|
167 |
+
(output): BertSelfOutput(
|
168 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
169 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
170 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
171 |
+
)
|
172 |
+
)
|
173 |
+
(intermediate): BertIntermediate(
|
174 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
175 |
+
(intermediate_act_fn): GELUActivation()
|
176 |
+
)
|
177 |
+
(output): BertOutput(
|
178 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
179 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
180 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
181 |
+
)
|
182 |
+
)
|
183 |
+
(7): BertLayer(
|
184 |
+
(attention): BertAttention(
|
185 |
+
(self): BertSelfAttention(
|
186 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
189 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
190 |
+
)
|
191 |
+
(output): BertSelfOutput(
|
192 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
193 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
194 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
195 |
+
)
|
196 |
+
)
|
197 |
+
(intermediate): BertIntermediate(
|
198 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
199 |
+
(intermediate_act_fn): GELUActivation()
|
200 |
+
)
|
201 |
+
(output): BertOutput(
|
202 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
203 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
204 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
205 |
+
)
|
206 |
+
)
|
207 |
+
(8): BertLayer(
|
208 |
+
(attention): BertAttention(
|
209 |
+
(self): BertSelfAttention(
|
210 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
213 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
214 |
+
)
|
215 |
+
(output): BertSelfOutput(
|
216 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
217 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
218 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
219 |
+
)
|
220 |
+
)
|
221 |
+
(intermediate): BertIntermediate(
|
222 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
223 |
+
(intermediate_act_fn): GELUActivation()
|
224 |
+
)
|
225 |
+
(output): BertOutput(
|
226 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
227 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
228 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
229 |
+
)
|
230 |
+
)
|
231 |
+
(9): BertLayer(
|
232 |
+
(attention): BertAttention(
|
233 |
+
(self): BertSelfAttention(
|
234 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
237 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
238 |
+
)
|
239 |
+
(output): BertSelfOutput(
|
240 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
241 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
242 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
243 |
+
)
|
244 |
+
)
|
245 |
+
(intermediate): BertIntermediate(
|
246 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
247 |
+
(intermediate_act_fn): GELUActivation()
|
248 |
+
)
|
249 |
+
(output): BertOutput(
|
250 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
251 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
252 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
253 |
+
)
|
254 |
+
)
|
255 |
+
(10): BertLayer(
|
256 |
+
(attention): BertAttention(
|
257 |
+
(self): BertSelfAttention(
|
258 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
261 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
262 |
+
)
|
263 |
+
(output): BertSelfOutput(
|
264 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
265 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
266 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
267 |
+
)
|
268 |
+
)
|
269 |
+
(intermediate): BertIntermediate(
|
270 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
271 |
+
(intermediate_act_fn): GELUActivation()
|
272 |
+
)
|
273 |
+
(output): BertOutput(
|
274 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
275 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
276 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
277 |
+
)
|
278 |
+
)
|
279 |
+
(11): BertLayer(
|
280 |
+
(attention): BertAttention(
|
281 |
+
(self): BertSelfAttention(
|
282 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
285 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
286 |
+
)
|
287 |
+
(output): BertSelfOutput(
|
288 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
289 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
290 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
291 |
+
)
|
292 |
+
)
|
293 |
+
(intermediate): BertIntermediate(
|
294 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
295 |
+
(intermediate_act_fn): GELUActivation()
|
296 |
+
)
|
297 |
+
(output): BertOutput(
|
298 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
299 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
300 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
)
|
305 |
+
(pooler): BertPooler(
|
306 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
307 |
+
(activation): Tanh()
|
308 |
+
)
|
309 |
+
)
|
310 |
+
)
|
311 |
+
(list_embedding_1): FlairEmbeddings(
|
312 |
+
(lm): LanguageModel(
|
313 |
+
(drop): Dropout(p=0.5, inplace=False)
|
314 |
+
(encoder): Embedding(275, 100)
|
315 |
+
(rnn): LSTM(100, 1024)
|
316 |
+
(decoder): Linear(in_features=1024, out_features=275, bias=True)
|
317 |
+
)
|
318 |
+
)
|
319 |
+
(list_embedding_2): FlairEmbeddings(
|
320 |
+
(lm): LanguageModel(
|
321 |
+
(drop): Dropout(p=0.5, inplace=False)
|
322 |
+
(encoder): Embedding(275, 100)
|
323 |
+
(rnn): LSTM(100, 1024)
|
324 |
+
(decoder): Linear(in_features=1024, out_features=275, bias=True)
|
325 |
+
)
|
326 |
+
)
|
327 |
+
)
|
328 |
+
(word_dropout): WordDropout(p=0.05)
|
329 |
+
(locked_dropout): LockedDropout(p=0.5)
|
330 |
+
(embedding2nn): Linear(in_features=2816, out_features=2816, bias=True)
|
331 |
+
(linear): Linear(in_features=2816, out_features=13, bias=True)
|
332 |
+
(loss_function): CrossEntropyLoss()
|
333 |
+
)"
|
334 |
+
2022-10-01 00:23:25,114 ----------------------------------------------------------------------------------------------------
|
335 |
+
2022-10-01 00:23:25,115 Corpus: "Corpus: 70000 train + 15000 dev + 15000 test sentences"
|
336 |
+
2022-10-01 00:23:25,115 ----------------------------------------------------------------------------------------------------
|
337 |
+
2022-10-01 00:23:25,115 Parameters:
|
338 |
+
2022-10-01 00:23:25,116 - learning_rate: "0.010000"
|
339 |
+
2022-10-01 00:23:25,116 - mini_batch_size: "8"
|
340 |
+
2022-10-01 00:23:25,116 - patience: "3"
|
341 |
+
2022-10-01 00:23:25,116 - anneal_factor: "0.5"
|
342 |
+
2022-10-01 00:23:25,116 - max_epochs: "2"
|
343 |
+
2022-10-01 00:23:25,116 - shuffle: "True"
|
344 |
+
2022-10-01 00:23:25,117 - train_with_dev: "False"
|
345 |
+
2022-10-01 00:23:25,117 - batch_growth_annealing: "False"
|
346 |
+
2022-10-01 00:23:25,117 ----------------------------------------------------------------------------------------------------
|
347 |
+
2022-10-01 00:23:25,117 Model training base path: "c:\Users\Ivan\Documents\Projects\Yoda\NER\model\flair\src\..\models\mix_trans_word"
|
348 |
+
2022-10-01 00:23:25,117 ----------------------------------------------------------------------------------------------------
|
349 |
+
2022-10-01 00:23:25,118 Device: cuda:0
|
350 |
+
2022-10-01 00:23:25,118 ----------------------------------------------------------------------------------------------------
|
351 |
+
2022-10-01 00:23:25,118 Embeddings storage mode: cpu
|
352 |
+
2022-10-01 00:23:25,119 ----------------------------------------------------------------------------------------------------
|
353 |
+
2022-10-01 00:25:10,652 epoch 1 - iter 875/8750 - loss 0.52734710 - samples/sec: 66.36 - lr: 0.010000
|
354 |
+
2022-10-01 00:26:56,050 epoch 1 - iter 1750/8750 - loss 0.40571165 - samples/sec: 66.45 - lr: 0.010000
|
355 |
+
2022-10-01 00:28:42,758 epoch 1 - iter 2625/8750 - loss 0.33981350 - samples/sec: 65.63 - lr: 0.010000
|
356 |
+
2022-10-01 00:30:27,826 epoch 1 - iter 3500/8750 - loss 0.29553411 - samples/sec: 66.66 - lr: 0.010000
|
357 |
+
2022-10-01 00:32:13,605 epoch 1 - iter 4375/8750 - loss 0.26472648 - samples/sec: 66.21 - lr: 0.010000
|
358 |
+
2022-10-01 00:33:58,962 epoch 1 - iter 5250/8750 - loss 0.24119392 - samples/sec: 66.47 - lr: 0.010000
|
359 |
+
2022-10-01 00:35:44,264 epoch 1 - iter 6125/8750 - loss 0.22350560 - samples/sec: 66.50 - lr: 0.010000
|
360 |
+
2022-10-01 00:37:29,676 epoch 1 - iter 7000/8750 - loss 0.20938707 - samples/sec: 66.43 - lr: 0.010000
|
361 |
+
2022-10-01 00:39:17,828 epoch 1 - iter 7875/8750 - loss 0.19801233 - samples/sec: 64.75 - lr: 0.010000
|
362 |
+
2022-10-01 00:41:05,621 epoch 1 - iter 8750/8750 - loss 0.18900810 - samples/sec: 64.98 - lr: 0.010000
|
363 |
+
2022-10-01 00:41:05,624 ----------------------------------------------------------------------------------------------------
|
364 |
+
2022-10-01 00:41:05,624 EPOCH 1 done: loss 0.1890 - lr 0.010000
|
365 |
+
2022-10-01 00:43:16,083 Evaluating as a multi-label problem: False
|
366 |
+
2022-10-01 00:43:16,227 DEV : loss 0.06317088007926941 - f1-score (micro avg) 0.9585
|
367 |
+
2022-10-01 00:43:17,308 BAD EPOCHS (no improvement): 0
|
368 |
+
2022-10-01 00:43:17,309 saving best model
|
369 |
+
2022-10-01 00:43:18,885 ----------------------------------------------------------------------------------------------------
|
370 |
+
2022-10-01 00:45:00,373 epoch 2 - iter 875/8750 - loss 0.09938527 - samples/sec: 69.02 - lr: 0.010000
|
371 |
+
2022-10-01 00:46:39,918 epoch 2 - iter 1750/8750 - loss 0.09782604 - samples/sec: 70.36 - lr: 0.010000
|
372 |
+
2022-10-01 00:48:19,288 epoch 2 - iter 2625/8750 - loss 0.09732946 - samples/sec: 70.50 - lr: 0.010000
|
373 |
+
2022-10-01 00:49:56,913 epoch 2 - iter 3500/8750 - loss 0.09652202 - samples/sec: 71.76 - lr: 0.010000
|
374 |
+
2022-10-01 00:51:35,781 epoch 2 - iter 4375/8750 - loss 0.09592801 - samples/sec: 70.86 - lr: 0.010000
|
375 |
+
2022-10-01 00:53:12,838 epoch 2 - iter 5250/8750 - loss 0.09478132 - samples/sec: 72.17 - lr: 0.010000
|
376 |
+
2022-10-01 00:54:49,247 epoch 2 - iter 6125/8750 - loss 0.09405506 - samples/sec: 72.65 - lr: 0.010000
|
377 |
+
2022-10-01 00:56:26,656 epoch 2 - iter 7000/8750 - loss 0.09270363 - samples/sec: 71.90 - lr: 0.010000
|
378 |
+
2022-10-01 00:58:04,050 epoch 2 - iter 7875/8750 - loss 0.09222568 - samples/sec: 71.92 - lr: 0.010000
|
379 |
+
2022-10-01 00:59:41,351 epoch 2 - iter 8750/8750 - loss 0.09155321 - samples/sec: 71.98 - lr: 0.010000
|
380 |
+
2022-10-01 00:59:41,359 ----------------------------------------------------------------------------------------------------
|
381 |
+
2022-10-01 00:59:41,360 EPOCH 2 done: loss 0.0916 - lr 0.010000
|
382 |
+
2022-10-01 01:01:38,941 Evaluating as a multi-label problem: False
|
383 |
+
2022-10-01 01:01:39,054 DEV : loss 0.04371843859553337 - f1-score (micro avg) 0.9749
|
384 |
+
2022-10-01 01:01:40,056 BAD EPOCHS (no improvement): 0
|
385 |
+
2022-10-01 01:01:40,058 saving best model
|
386 |
+
2022-10-01 01:01:42,979 ----------------------------------------------------------------------------------------------------
|
387 |
+
2022-10-01 01:01:42,986 loading file c:\Users\Ivan\Documents\Projects\Yoda\NER\model\flair\src\..\models\mix_trans_word\best-model.pt
|
388 |
+
2022-10-01 01:01:46,879 SequenceTagger predicts: Dictionary with 13 tags: O, S-brand, B-brand, E-brand, I-brand, S-size, B-size, E-size, I-size, S-color, B-color, E-color, I-color
|
389 |
+
2022-10-01 01:03:40,258 Evaluating as a multi-label problem: False
|
390 |
+
2022-10-01 01:03:40,388 0.9719 0.9777 0.9748 0.951
|
391 |
+
2022-10-01 01:03:40,389
|
392 |
+
Results:
|
393 |
+
- F-score (micro) 0.9748
|
394 |
+
- F-score (macro) 0.9624
|
395 |
+
- Accuracy 0.951
|
396 |
+
|
397 |
+
By class:
|
398 |
+
precision recall f1-score support
|
399 |
+
|
400 |
+
brand 0.9779 0.9849 0.9814 11779
|
401 |
+
size 0.9780 0.9821 0.9800 3125
|
402 |
+
color 0.9249 0.9264 0.9256 1915
|
403 |
+
|
404 |
+
micro avg 0.9719 0.9777 0.9748 16819
|
405 |
+
macro avg 0.9603 0.9644 0.9624 16819
|
406 |
+
weighted avg 0.9719 0.9777 0.9748 16819
|
407 |
+
|
408 |
+
2022-10-01 01:03:40,391 ----------------------------------------------------------------------------------------------------
|