metadata
language:
- el
- en
tags:
- translation
widget:
- text: Κάνω διδακτορικό στην υπολογιστική γλωσσολογία.
license: apache-2.0
metrics:
- bleu
Greek to English NMT from Hellenic Army Academy (SSE) and Technical University of Crete (TUC)
- source languages: el
- target languages: en
- licence: apache-2.0
- dataset: Opus, CCmatrix
- model: transformer(fairseq)
- pre-processing: tokenization + BPE segmentation
- metrics: bleu, chrf
Model description
Trained using the Fairseq framework, transformer_iwslt_de_en architecture.
BPE segmentation (20k codes).
Mixed-case model.
How to use
from transformers import FSMTTokenizer, FSMTForConditionalGeneration
mname = " <your_downloaded_model_folderpath_here> "
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
text = "Κάνω διδακτορικό στην υπολογιστική γλωσσολογία."
encoded = tokenizer.encode(text, return_tensors='pt')
outputs = model.generate(encoded, num_beams=5, num_return_sequences=5, early_stopping=True)
for i, output in enumerate(outputs):
i += 1
print(f"{i}: {output.tolist()}")
decoded = tokenizer.decode(output, skip_special_tokens=True)
print(f"{i}: {decoded}")
Training data
Consolidated corpus from Opus and CC-Matrix (~6.6GB in total)
Eval results
Results on Tatoeba testset (EL-EN):
BLEU | chrF |
---|---|
79.3 | 0.795 |
Results on XNLI parallel (EL-EN):
BLEU | chrF |
---|---|
66.2 | 0.623 |
BibTeX entry and citation info
TODO