File size: 10,409 Bytes
49554ce
 
2ba18e8
 
 
49554ce
 
 
 
2ba18e8
49554ce
 
 
02601cf
 
 
 
 
 
a6f9751
02601cf
 
 
 
 
 
 
 
 
 
cb119d0
02601cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a521acc
 
 
 
 
 
 
 
 
b5ad17c
02601cf
bb5358d
 
02601cf
 
 
 
 
 
 
 
 
 
 
b65414a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c6e88e
b65414a
02601cf
 
 
 
 
 
 
 
 
49554ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ba18e8
 
 
49554ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358948f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49554ce
 
 
4990ff6
 
49554ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
---
license: other
license_name: llama-3
license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/raw/main/LICENSE

base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- generated_from_trainer
model-index:
- name: lightblue/suzume-llama-3-8B-multilingual
  results: []
---

<p align="center">
  <img width=400 src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kg3QjQOde0X743csGJT-f.png" alt="Suzume - a Japanese tree sparrow"/>
</p>

# Suzume

This Suzume 8B, a multilingual finetune of Llama 3 ([meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)).

Llama 3 has exhibited excellent performance on many English language benchmarks. 
However, it also seemingly been finetuned on mostly English data, meaning that it will respond in English, even if prompted in other languages.

We have fine-tuned Llama 3 on almost 90,000 multilingual conversations meaning that this model has the smarts of Llama 3 but has the added ability to chat in more languages.

Please feel free to comment on this model and give us feedback in the Community tab!

# How to use

The easiest way to use this model on your own computer is to use the [GGUF version of this model (lightblue/suzume-llama-3-8B-multilingual-gguf)](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-gguf) using a program such as [jan.ai](https://jan.ai/) or [LM Studio](https://lmstudio.ai/).

If you want to use this model directly in Python, we recommend using vLLM for the fastest inference speeds.

```python
from vllm import LLM, SamplingParams

sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
llm = LLM(model="lightblue/suzume-llama-3-8B-multilingual")

messages = []
messages.append({"role": "user", "content": "Bonjour!"})
prompt = llm.llm_engine.tokenizer.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
prompts = [prompt]

outputs = llm.generate(prompts, sampling_params)
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```

# Evaluation scores

We achieve the following MT-Bench scores across 6 languages:

|                 | **meta-llama/Meta-Llama-3-8B-Instruct** | **lightblue/suzume-llama-3-8B-multilingual** | **Nexusflow/Starling-LM-7B-beta** | **gpt-3.5-turbo** |
|-----------------|-----------------------------------------|----------------------------------------------|-----------------------------------|-------------------|
| **German** πŸ‡©πŸ‡ͺ   | NaN                                     | 7.26                                         | 6.99                              | 7.68              |
| **French** πŸ‡«πŸ‡·   | NaN                                     | 7.66                                         | 7.29                              | 7.74              |
| **Japanese** πŸ‡―πŸ‡΅ | NaN                                     | 6.56                                         | 6.22                              | 7.84              |
| **Russian** πŸ‡·πŸ‡Ί  | NaN                                     | 8.19                                         | 8.28                              | 7.94              |
| **Chinese** πŸ‡¨πŸ‡³  | NaN                                     | 7.11                                         | 6.97                              | 7.55              |
| **English** πŸ‡ΊπŸ‡Έ  | 7.98                                    | 7.73                                         | 7.92                              | 8.26              |

We observe minimal degredation of Llama 3's English ability while achieving best-in-class multilingual abilities compared to the top rated 7B model ([Nexusflow/Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta)) on the [Chatbot Arena Leaderboard](https://chat.lmsys.org/?leaderboard).

[Here is our evaluation script.](https://drive.google.com/file/d/15HPn7452t8LbTD9HKSl7ngYYWnsoOG08/view?usp=sharing)

# Training data

We train on three sources of data to create this model:

* [lightblue/tagengo-gpt4](https://huggingface.co/datasets/lightblue/tagengo-gpt4) - 76,338 conversations
    * A diverse dataset of initial inputs sampled from [lmsys/lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) and then used to prompt `gpt-4-0125-preview`
* [megagonlabs/instruction_ja](https://github.com/megagonlabs/instruction_ja) - 669 conversations
    * A hand-edited dataset of nearly 700 Japanese conversations taken originally from translations of the [kunishou/hh-rlhf-49k-ja](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja) dataset.
* [openchat/openchat_sharegpt4_dataset](https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset/resolve/main/sharegpt_gpt4.json) - 6,206 conversations
    * Multilingual conversations of humans talking to GPT-4.


<details><summary>We prepare our data like so:</summary>

```python
import pandas as pd
from datasets import Dataset, load_dataset, concatenate_datasets

### Tagengo
gpt4_dataset = load_dataset("lightblue/tagengo-gpt4", split="train")
gpt4_dataset = gpt4_dataset.filter(lambda x: x["response"][1] == "stop")
####

### Megagon
megagon_df = pd.read_json(
    "https://raw.githubusercontent.com/megagonlabs/instruction_ja/main/data/data.jsonl",
    lines=True,
    orient="records"
    )
role_map = {"user": "human", "agent": "gpt"}
megagon_df["conversations"] = megagon_df.utterances.apply(lambda x: [{"from": role_map[y["name"]], "value": y["text"]} for y in x])
megagon_df["language"] = "Japanese"
megagon_df = megagon_df[["conversations", "language"]]
megagon_dataset = Dataset.from_pandas(df)
###

### Openchat
openchat_df = pd.read_json("https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset/resolve/main/sharegpt_gpt4.json?download=true")
openchat_df["conversations"] = openchat_df["items"]
openchat_dataset = Dataset.from_pandas(openchat_df)
###


dataset = concatenate_datasets([gpt4_dataset, megagon_dataset, openchat_dataset])
dataset = dataset.filter(lambda x: not any([y["value"] is None for y in x["conversations"]]))
dataset.select_columns(["conversations"]).to_json("/workspace/llm_training/axolotl/llama3-multilingual/tagengo_openchat_megagon.json")
```

</details>
<br/>

# workspace/llm_training/axolotl/llama3-multilingual/output_tagengo_openchat_megagon_8B_llama3

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the above described dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6595


## Training procedure

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer  # PreTrainedTokenizerFast

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: /workspace/llm_training/axolotl/llama3-multilingual/tagengo_openchat_megagon.json
    ds_type: json # see other options below
    type: sharegpt
    conversation: llama-3
dataset_prepared_path: /workspace/llm_training/axolotl/llama3-multilingual/prepared_tagengo_openchat_megagon
val_set_size: 0.01
output_dir: /workspace/llm_training/axolotl/llama3-multilingual/output_tagengo_openchat_megagon_8B_llama3

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

use_wandb: true
wandb_project: wandb_project
wandb_entity: wandb_entity
wandb_name: wandb_name

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
special_tokens:
  pad_token: <|end_of_text|>
```

</details><br>

<details><summary>Note - we added this Llama 3 template to fastchat directly as the Llama 3 chat template was not supported when we trained this model.</summary>
  
```python
from fastchat.conversation import Conversation
from fastchat.conversation import register_conv_template
from fastchat.conversation import SeparatorStyle

register_conv_template(
    Conversation(
        name="llama-3",
        system_template="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_message}",
        roles=("<|start_header_id|>user<|end_header_id|>\n", "<|start_header_id|>assistant<|end_header_id|>\n"),
        sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
        sep="<|eot_id|>",
        stop_token_ids=[128009],
        stop_str="<|eot_id|>",
    )
)
```

</details><br>


### Training hyperparameters

This model was trained using 4 x A100 (80GB) for roughly 2.5 hours.

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1894        | 0.0   | 1    | 1.0110          |
| 0.8493        | 0.2   | 73   | 0.7057          |
| 0.8047        | 0.4   | 146  | 0.6835          |
| 0.7644        | 0.6   | 219  | 0.6687          |
| 0.7528        | 0.8   | 292  | 0.6615          |
| 0.7794        | 1.0   | 365  | 0.6595          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0