File size: 3,765 Bytes
5b7b307 bb6f42f 5b7b307 b8d39cb 5b7b307 1b6b19e ffbf5c7 b374cf4 7a26fd9 94d7b00 0ba45ce 7a26fd9 1247be2 af5ecb1 1247be2 94d7b00 5b7b307 e7f0b62 5b7b307 7c487d6 5b7b307 204bf2a 5b7b307 9a9c077 5b7b307 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
license: other
license_name: tongyi-qianwen-license-agreement
license_link: https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
datasets:
- OpenAssistant/oasst1
- zetavg/ShareGPT-Processed
- augmxnt/ultra-orca-boros-en-ja-v1
language:
- ja
- en
---
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64c8a2e01c25d2c581a381c1/9CbN4lDGU42c-7DmK_mGM.png" alt="drawing" width="600"/>
</p>
Qwen/Qwen-14B-Chat + Karasu's finetuning datasets
# Demo ・ モデルのデモ
[Model demo ・ モデルのデモ](https://lightblue-qarasu.serveo.net/)
# Blog post・説明の記事
[Blog post・説明の記事](https://note.com/peter_lightblue/n/ne08a7c8cc47a)
# Evaluation
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/s3eUP07LOPkxwzNS2p9Yp.png)
In our internal evaluations, we find the Qarasu model to have particularly high performance on the MTーBench benchmark. We are currently awaiting external evaluations.
# How to use
### Hugggingface
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("lightblue/qarasu-14B-chat-plus-unleashed", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("lightblue/qarasu-14B-chat-plus-unleashed", torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
prompt = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
pipe(prompt, max_new_tokens=100, do_sample=False, temperature=0.0, return_full_text=False)
```
### VLLM
```python
from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
llm = LLM(model="lightblue/qarasu-14B-chat-plus-unleashed", trust_remote_code=True)
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
prompt = llm.llm_engine.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
prompts = [prompt]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
# Base checkpoint
[Qwen/Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat)
# Training datasets (total ~7B)
The same as the 'plus' checkpoint, but with about 6K refusals ("申し訳ありませんが、。。。") filtered out from the category dataset
* Lightblue's suite of Kujira datasets (unreleased)
* Lightblue's own question-based datasets (unreleased)
* Lightblue's own category-based datasets (unreleased)
* [OASST](https://huggingface.co/datasets/OpenAssistant/oasst1) (Japanese chats only)
* [ShareGPT](https://huggingface.co/datasets/zetavg/ShareGPT-Processed) (Japanese chats only)
* [augmxnt/ultra-orca-boros-en-ja-v1](https://huggingface.co/datasets/augmxnt/ultra-orca-boros-en-ja-v1) (['airoboros', 'slimorca', 'ultrafeedback', 'airoboros_ja_new'] only)
# Developed by
<a href="https://www.lightblue-tech.com">
<img src="https://www.lightblue-tech.com/wp-content/uploads/2023/08/color_%E6%A8%AA%E5%9E%8B-1536x469.png" alt="Lightblue technology logo" width="400"/>
</a>
### Engineers
Peter Devine
Sho Higuchi
### Advisors
Yuuki Yamanaka
Atom Sonoda
### Project manager
Shunichi Taniguchi
### Dataset evaluator
Renju Aoki |