File size: 4,631 Bytes
41a6cfa
db04985
 
41a6cfa
 
 
d63340c
 
41a6cfa
 
 
 
e1f1600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41a6cfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
language:
- pt
license: apache-2.0
tags:
- generated_from_trainer
- pt
- robust-speech-event
datasets:
- common_voice
model-index:
- name: sew-tiny-portuguese-cv
  results:
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 6
      type: common_voice
      args: pt
    metrics:
       - name: Test WER
         type: wer
         value: 30.02
       - name: Test CER
         type: cer
         value: 10.34
  - task: 
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: sv
    metrics:
       - name: Test WER
         type: wer
         value: 56.46
       - name: Test CER
         type: cer
         value: 22.94
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sew-tiny-portuguese-cv

This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5110
- Wer: 0.2842

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 40000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer    |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| No log        | 4.92   | 1000  | 0.8468          | 0.6494 |
| 3.4638        | 9.85   | 2000  | 0.4978          | 0.3815 |
| 3.4638        | 14.78  | 3000  | 0.4734          | 0.3417 |
| 0.9904        | 19.7   | 4000  | 0.4577          | 0.3344 |
| 0.9904        | 24.63  | 5000  | 0.4376          | 0.3170 |
| 0.8849        | 29.55  | 6000  | 0.4225          | 0.3118 |
| 0.8849        | 34.48  | 7000  | 0.4354          | 0.3080 |
| 0.819         | 39.41  | 8000  | 0.4434          | 0.3004 |
| 0.819         | 44.33  | 9000  | 0.4710          | 0.3132 |
| 0.7706        | 49.26  | 10000 | 0.4497          | 0.3064 |
| 0.7706        | 54.19  | 11000 | 0.4598          | 0.3100 |
| 0.7264        | 59.11  | 12000 | 0.4271          | 0.3013 |
| 0.7264        | 64.04  | 13000 | 0.4333          | 0.2959 |
| 0.6909        | 68.96  | 14000 | 0.4554          | 0.3019 |
| 0.6909        | 73.89  | 15000 | 0.4444          | 0.2888 |
| 0.6614        | 78.81  | 16000 | 0.4734          | 0.3081 |
| 0.6614        | 83.74  | 17000 | 0.4820          | 0.3058 |
| 0.6379        | 88.67  | 18000 | 0.4416          | 0.2950 |
| 0.6379        | 93.59  | 19000 | 0.4614          | 0.2974 |
| 0.6055        | 98.52  | 20000 | 0.4812          | 0.3018 |
| 0.6055        | 103.45 | 21000 | 0.4700          | 0.3018 |
| 0.5823        | 108.37 | 22000 | 0.4726          | 0.2999 |
| 0.5823        | 113.3  | 23000 | 0.4979          | 0.2887 |
| 0.5597        | 118.23 | 24000 | 0.4813          | 0.2980 |
| 0.5597        | 123.15 | 25000 | 0.4968          | 0.2972 |
| 0.542         | 128.08 | 26000 | 0.5331          | 0.3059 |
| 0.542         | 133.0  | 27000 | 0.5046          | 0.2978 |
| 0.5185        | 137.93 | 28000 | 0.4882          | 0.2922 |
| 0.5185        | 142.85 | 29000 | 0.4945          | 0.2938 |
| 0.499         | 147.78 | 30000 | 0.4971          | 0.2913 |
| 0.499         | 152.71 | 31000 | 0.4948          | 0.2873 |
| 0.4811        | 157.63 | 32000 | 0.4924          | 0.2918 |
| 0.4811        | 162.56 | 33000 | 0.5128          | 0.2911 |
| 0.4679        | 167.49 | 34000 | 0.5098          | 0.2892 |
| 0.4679        | 172.41 | 35000 | 0.4966          | 0.2863 |
| 0.456         | 177.34 | 36000 | 0.5033          | 0.2839 |
| 0.456         | 182.27 | 37000 | 0.5114          | 0.2875 |
| 0.4453        | 187.19 | 38000 | 0.5154          | 0.2859 |
| 0.4453        | 192.12 | 39000 | 0.5102          | 0.2847 |
| 0.4366        | 197.04 | 40000 | 0.5110          | 0.2842 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0