update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: sew-tiny-portuguese-cv
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# sew-tiny-portuguese-cv
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5110
|
20 |
+
- Wer: 0.2842
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 1000
|
48 |
+
- training_steps: 40000
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
55 |
+
| No log | 4.92 | 1000 | 0.8468 | 0.6494 |
|
56 |
+
| 3.4638 | 9.85 | 2000 | 0.4978 | 0.3815 |
|
57 |
+
| 3.4638 | 14.78 | 3000 | 0.4734 | 0.3417 |
|
58 |
+
| 0.9904 | 19.7 | 4000 | 0.4577 | 0.3344 |
|
59 |
+
| 0.9904 | 24.63 | 5000 | 0.4376 | 0.3170 |
|
60 |
+
| 0.8849 | 29.55 | 6000 | 0.4225 | 0.3118 |
|
61 |
+
| 0.8849 | 34.48 | 7000 | 0.4354 | 0.3080 |
|
62 |
+
| 0.819 | 39.41 | 8000 | 0.4434 | 0.3004 |
|
63 |
+
| 0.819 | 44.33 | 9000 | 0.4710 | 0.3132 |
|
64 |
+
| 0.7706 | 49.26 | 10000 | 0.4497 | 0.3064 |
|
65 |
+
| 0.7706 | 54.19 | 11000 | 0.4598 | 0.3100 |
|
66 |
+
| 0.7264 | 59.11 | 12000 | 0.4271 | 0.3013 |
|
67 |
+
| 0.7264 | 64.04 | 13000 | 0.4333 | 0.2959 |
|
68 |
+
| 0.6909 | 68.96 | 14000 | 0.4554 | 0.3019 |
|
69 |
+
| 0.6909 | 73.89 | 15000 | 0.4444 | 0.2888 |
|
70 |
+
| 0.6614 | 78.81 | 16000 | 0.4734 | 0.3081 |
|
71 |
+
| 0.6614 | 83.74 | 17000 | 0.4820 | 0.3058 |
|
72 |
+
| 0.6379 | 88.67 | 18000 | 0.4416 | 0.2950 |
|
73 |
+
| 0.6379 | 93.59 | 19000 | 0.4614 | 0.2974 |
|
74 |
+
| 0.6055 | 98.52 | 20000 | 0.4812 | 0.3018 |
|
75 |
+
| 0.6055 | 103.45 | 21000 | 0.4700 | 0.3018 |
|
76 |
+
| 0.5823 | 108.37 | 22000 | 0.4726 | 0.2999 |
|
77 |
+
| 0.5823 | 113.3 | 23000 | 0.4979 | 0.2887 |
|
78 |
+
| 0.5597 | 118.23 | 24000 | 0.4813 | 0.2980 |
|
79 |
+
| 0.5597 | 123.15 | 25000 | 0.4968 | 0.2972 |
|
80 |
+
| 0.542 | 128.08 | 26000 | 0.5331 | 0.3059 |
|
81 |
+
| 0.542 | 133.0 | 27000 | 0.5046 | 0.2978 |
|
82 |
+
| 0.5185 | 137.93 | 28000 | 0.4882 | 0.2922 |
|
83 |
+
| 0.5185 | 142.85 | 29000 | 0.4945 | 0.2938 |
|
84 |
+
| 0.499 | 147.78 | 30000 | 0.4971 | 0.2913 |
|
85 |
+
| 0.499 | 152.71 | 31000 | 0.4948 | 0.2873 |
|
86 |
+
| 0.4811 | 157.63 | 32000 | 0.4924 | 0.2918 |
|
87 |
+
| 0.4811 | 162.56 | 33000 | 0.5128 | 0.2911 |
|
88 |
+
| 0.4679 | 167.49 | 34000 | 0.5098 | 0.2892 |
|
89 |
+
| 0.4679 | 172.41 | 35000 | 0.4966 | 0.2863 |
|
90 |
+
| 0.456 | 177.34 | 36000 | 0.5033 | 0.2839 |
|
91 |
+
| 0.456 | 182.27 | 37000 | 0.5114 | 0.2875 |
|
92 |
+
| 0.4453 | 187.19 | 38000 | 0.5154 | 0.2859 |
|
93 |
+
| 0.4453 | 192.12 | 39000 | 0.5102 | 0.2847 |
|
94 |
+
| 0.4366 | 197.04 | 40000 | 0.5110 | 0.2842 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.16.0.dev0
|
100 |
+
- Pytorch 1.10.1+cu102
|
101 |
+
- Datasets 1.17.1.dev0
|
102 |
+
- Tokenizers 0.11.0
|