Improve model card: Add pipeline tag, license, and comprehensive content for LeVo (SongGeneration)

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +640 -3
README.md CHANGED
@@ -1,3 +1,640 @@
1
- ---
2
- license: unknown
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-to-audio
4
+ ---
5
+
6
+ # LeVo: High-Quality Song Generation with Multi-Preference Alignment
7
+
8
+ <p align="center"><img src="https://github.com/tencent-ailab/songgeneration/raw/main/img/logo.jpg" width="40%"></p>
9
+ <p align="center">
10
+ <a href="https://levo-demo.github.io/">Demo</a> &nbsp;|&nbsp; <a href="https://huggingface.co/papers/2506.07520">Paper</a> &nbsp;|&nbsp; <a href="https://huggingface.co/waytan22/SongGeneration">Hugging Face</a> &nbsp;|&nbsp; <a href="https://huggingface.co/spaces/waytan22/SongGeneration-LeVo">Space Demo</a> &nbsp;|&nbsp; <a href="https://github.com/tencent-ailab/songgeneration">Code</a>
11
+ </p>
12
+
13
+ This repository is the official repository for β€œLeVo: High-Quality Song Generation with Multi-Preference Alignment” ([NeurIPS 2025](https://huggingface.co/papers/2506.07520)). In this repository, we provide the SongGeneration model, inference scripts, pretrained checkpoints, and some music generation tools.
14
+
15
+ ## Abstract
16
+ Recent advances in large language models (LLMs) and audio language models have significantly improved music generation, particularly in lyrics-to-song generation. However, existing approaches still struggle with the complex composition of songs and the scarcity of high-quality data, leading to limitations in audio quality, musicality, instruction following, and vocal-instrument harmony. To address these challenges, we introduce LeVo, a language model based framework consisting of LeLM and Music Codec. LeLM is capable of parallel modeling of two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve better vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. It employs two decoder-only transformers and a modular extension training strategy to prevent interference between different token types. To further enhance musicality and instruction following ability, we introduce a multi-preference alignment method based on Direct Preference Optimization (DPO). This method handles diverse human preferences through a semi-automatic data construction process and post-training. Experimental results demonstrate that LeVo significantly outperforms existing open-source methods in both objective and subjective metrics, while performing competitively with industry systems. Ablation studies further justify the effectiveness of our designs. Audio examples and source code are available at this https URL and this https URL .
17
+
18
+ ## News and Updates
19
+
20
+ * **2025.10.16 πŸ”₯**: Our [**Demo webpage**](https://huggingface.co/spaces/tencent/SongGeneration) now supports **full-length song generation (up to 4m30s)**! 🎢 Experience end-to-end music generation with vocals and accompaniment β€” try it out now!
21
+ * **2025.10.15 πŸ”₯**: We have updated the codebase to improve **inference speed** and **generation quality**, and adapted it to the **latest model version**. Please **update to the newest code** to ensure the **best performance and user experience**.
22
+ * **2025.10.14 πŸ”₯**: We have released the **large model (SongGeneration-large)**.
23
+ * **2025.10.13 πŸ”₯**: We have released the **full time model (SongGeneration-base-full)** and **evaluation performance**.
24
+ * **2025.10.12 πŸ”₯**: We have released the **english enhanced model (SongGeneration-base-new)**.
25
+ * **2025.09.23 πŸ”₯**: We have released the [Data Processing Pipeline](https://github.com/tencent-ailab/SongPrep), which is capable of **analyzing the structure and lyrics** of entire songs and **providing precise timestamps** without the need for additional source separation. On the human-annotated test set [SSLD-200](https://huggingface.co/datasets/waytan22/SSLD-200), the model’s performance outperforms mainstream models including Gemini-2.5, Seed-ASR, and Qwen3-ASR.
26
+ * **2025.07.25 πŸ”₯**: SongGeneration can now run with as little as **10GB of GPU memory**.
27
+ * **2025.07.18 πŸ”₯**: SongGeneration now supports generation of **pure music**, **pure vocals**, and **dual-track (vocals + accompaniment separately)** outputs.
28
+ * **2025.06.16 πŸ”₯**: We have released the **SongGeneration** series.
29
+
30
+ ## TODOsπŸ“‹
31
+
32
+ - [ ] Release SongGeneration-v1.5 (trained on a larger multilingual dataset, supports more languages, and integrates a Reward Model with Reinforcement Learning to enhance musicality and lyric alignment)
33
+ - [ ] Release finetuning scripts.
34
+ - [ ] Release Music Codec and VAE.
35
+ - [x] Release large model.
36
+ - [x] Release full time model.
37
+ - [x] Release English enhanced model.
38
+ - [x] Release data processing pipeline.
39
+ - [x] Update Low memory usage model.
40
+ - [x] Support single vocal/bgm track generation.
41
+
42
+ ## Model Versions
43
+
44
+ | Model | Max Length | Language | GPU Menmory | RFT(A100) | Download Link |
45
+ | :------------------------ | :--------: | :------------------: | :---------: | :-------: | :----------------------------------------------------------- |
46
+ | SongGeneration-base | 2m30s | zh | 10G/16G | 1.26 | [Huggingface](https://huggingface.co/tencent/SongGeneration/tree/main/ckpt/songgeneration_base) |
47
+ | SongGeneration-base-new | 2m30s | zh, en | 10G/16G | 1.26 | [Huggingface](https://huggingface.co/lglg666/SongGeneration-base-new) |
48
+ | SongGeneration-base-full | 4m30s | zh, en | 12G/18G | 1.30 | [Huggingface](https://huggingface.co/lglg666/SongGeneration-base-full) |
49
+ | SongGeneration-large | 4m30s | zh, en | 22G/28G | 1.51 | [Huggingface](https://huggingface.co/lglg666/SongGeneration-large) |
50
+ | SongGeneration-v1.5-small | 2m | zh, en, es, ja, etc. | - | - | Coming soon |
51
+ | SongGeneration-v1.5-base | 4m30s | zh, en, es, ja, etc. | - | - | Coming soon |
52
+ | SongGeneration-v1.5-large | 4m30s | zh, en, es, ja, etc. | - | - | Coming soon |
53
+
54
+ πŸ’‘ **Notes:**
55
+
56
+ - **GPU Memory** β€” β€œX / Y” means X: no prompt audio; Y: with prompt audio.
57
+ - **RFT** β€” Real Forward Time (pure inference, excluding model loading).
58
+
59
+ ## Overview
60
+
61
+ We develop the SongGeneration model. It is an LM-based framework consisting of **LeLM** and a **music codec**. LeLM is capable of parallelly modeling two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. The music codec reconstructs the dual-track tokens into highfidelity music audio. SongGeneration significantly improves over the open-source music generation models and performs competitively with current state-of-the-art industry systems. For more details, please refer to our [paper](https://huggingface.co/papers/2506.07520).
62
+
63
+ <img src="https://github.com/tencent-ailab/songgeneration/raw/main/img/over.jpg" alt="img" style="zoom:100%;" />
64
+
65
+ ## Installation
66
+
67
+ ### Start from scratch
68
+
69
+ You can install the necessary dependencies using the `requirements.txt` file with Python>=3.8.12 and CUDA>=11.8:
70
+
71
+ ```bash
72
+ pip install -r requirements.txt
73
+ pip install -r requirements_nodeps.txt --no-deps
74
+ ```
75
+
76
+ **(Optional)** Then install flash attention from git. For example, if you're using Python 3.10 and CUDA 12.0
77
+
78
+ ```bash
79
+ pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
80
+ ```
81
+
82
+ ### Start with docker
83
+
84
+ ```bash
85
+ docker pull juhayna/song-generation-levo:hf0613
86
+ docker run -it --gpus all --network=host juhayna/song-generation-levo:hf0613 /bin/bash
87
+ ```
88
+
89
+ ### Other deploy examples
90
+
91
+ - Windows platform with ComfyUI: https://github.com/smthemex/ComfyUI_SongGeneration
92
+ - Windows installer: http://bilibili.com/video/BV1ATK8zQE8L/?vd_source=22cfc54298226c4161b1aff457d17585
93
+ - Quick start with ComfyUI on CNB: https://cnb.cool/tencent/tencent-ailab/examples/SongGeneration-comfyui
94
+
95
+ ## Inference
96
+
97
+ To ensure the model runs correctly, **please download all the required folders** from the original source at [Hugging Face](https://huggingface.co/collections/lglg666/levo-68d0c3031c370cbfadade126).
98
+
99
+ - Download `ckpt` and `third_party` folder from [Hugging Face](https://huggingface.co/lglg666/SongGeneration-Runtime/tree/main) or [Hugging Face](https://huggingface.co/tencent/SongGeneration/tree/main), and move them into the **root directory** of the project. You can also download models using hugging face-cli.
100
+
101
+ ```
102
+ huggingface-cli download lglg666/SongGeneration-Runtime --local-dir ./runtime
103
+ mv runtime/ckpt ckpt
104
+ mv runtime/third_party third_party
105
+ ```
106
+
107
+ - Download the specific model checkpoint and save it to your specified checkpoint directory: `ckpt_path` (We provide multiple versions of model checkpoints. Please select the most suitable version based on your needs and download the corresponding file. Also, ensure the folder name matches the model version name.) Your can also download models using hugging face-cli.
108
+
109
+ ```
110
+ # download SongGeneration-base
111
+ huggingface-cli download lglg666/SongGeneration-base --local-dir ./songgeneration_base
112
+ # download SongGeneration-base-new
113
+ huggingface-cli download lglg666/SongGeneration-base-new --local-dir ./songgeneration_base_new
114
+ # download SongGeneration-base-full
115
+ huggingface-cli download lglg666/SongGeneration-base-full --local-dir ./songgeneration_base_full
116
+ # download SongGeneration-large
117
+ huggingface-cli download lglg666/SongGeneration-large --local-dir ./songgeneration_large
118
+ ```
119
+
120
+ Once everything is set up, you can run the inference script using the following command:
121
+
122
+ ```bash
123
+ sh generate.sh ckpt_path lyrics.jsonl output_path
124
+ ```
125
+
126
+ - You may provides sample inputs in JSON Lines (`.jsonl`) format. Each line represents an individual song generation request. The model expects each input to contain the following fields:
127
+
128
+ - `idx`: A unique identifier for the output song. It will be used as the name of the generated audio file.
129
+ - `gt_lyric`:The lyrics to be used in generation. It must follow the format of `[Structure] Text`, where `Structure` defines the musical section (e.g., `[Verse]`, `[Chorus]`). See Input Guide.
130
+ - `descriptions` : (Optional) You may customize the text prompt to guide the model’s generation. This can include attributes like gender, timbre, genre, emotion, instrument, and BPM. See Input Guide.
131
+ - `prompt_audio_path`: (Optional) Path to a 10-second reference audio file. If provided, the model will generate a new song in a similar style to the given reference.
132
+
133
+ - `auto_prompt_audio_type`: (Optional) Used only if `prompt_audio_path` is not provided. This allows the model to automatically select a reference audio from a predefined library based on a given style. Supported values include:
134
+ - `'Pop'`, `'R&B'`, `'Dance'`, `'Jazz'`, `'Folk'`, `'Rock'`,`'Chinese Style'`, `'Chinese Tradition'`, `'Metal'`, `'Reggae'`, `'Chinese Opera'`, `'Auto'`.
135
+ - **Note:** If certain optional fields are not required, they can be omitted.
136
+
137
+ - Outputs of the loader `output_path`:
138
+
139
+ - `audio`: generated audio files
140
+ - `jsonl`: output jsonls
141
+
142
+ - An example command may look like:
143
+
144
+ ```bash
145
+ sh generate.sh songgeneration_base sample/lyrics.jsonl sample/output
146
+ ```
147
+
148
+ If you encounter **out-of-memory (OOM**) issues, you can manually enable low-memory inference mode using the `--low_mem` flag. For example:
149
+
150
+ ```bash
151
+ sh generate.sh ckpt_path lyrics.jsonl output_path --low_mem
152
+ ```
153
+
154
+ If your GPU device does **not support Flash Attention** or your environment does **not have Flash Attention installed**, you can disable it by adding the `--not_use_flash_attn` flag. For example:
155
+
156
+ ```bash
157
+ sh generate.sh ckpt_path lyrics.jsonl output_path --not_use_flash_attn
158
+ ```
159
+
160
+ By default, the model generates **songs with both vocals and accompaniment**. If you want to generate **pure music**, **pure vocals**, or **separated vocal and accompaniment tracks**, please use the following flags:
161
+
162
+ - `--bgm`  Generate **pure music**
163
+ - `--vocal` Generate **vocal-only (a cappella)**
164
+ - `--separate` Generate **separated vocal and accompaniment tracks**
165
+
166
+ For example:
167
+
168
+ ```bash
169
+ sh generate.sh ckpt_path lyrics.jsonl output_path --separate
170
+ ```
171
+
172
+ ## Input Guide
173
+
174
+ An example input file can be found in `sample/lyrics.jsonl`
175
+
176
+ ### 🎡 Lyrics Input Format
177
+
178
+ The `gt_lyric` field defines the lyrics and structure of the song. It consists of multiple musical section, each starting with a structure label. The model uses these labels to guide the musical and lyrical progression of the generated song.
179
+
180
+ #### πŸ“Œ Structure Labels
181
+
182
+ - The following segments **should not** contain lyrics (they are purely instrumental):
183
+
184
+ - `[intro-short]`, `[intro-medium]`, `[inst-short]`, `[inst-medium]`, `[outro-short]`, `[outro-medium]`
185
+
186
+ > - `short` indicates a segment of approximately 0–10 seconds
187
+ > - `medium` indicates a segment of approximately 10–20 seconds
188
+ > - We find that [inst] label is less stable, so we recommend that you do not use it.
189
+
190
+ - The following segments **require lyrics**:
191
+
192
+ - `[verse]`, `[chorus]`, `[bridge]`
193
+
194
+ #### 🧾 Lyrics Formatting Rules
195
+
196
+ - Each section is **separated by ` ; `**
197
+
198
+ - Within lyrical segments (`[verse]`, `[chorus]`, `[bridge]`), lyrics must be written in complete sentences and separated by a period (`.`)
199
+
200
+ - A complete lyric string may look like:
201
+
202
+ ```
203
+ [intro-short] ; [verse] These faded memories of us. I can't erase the tears you cried before. Unchained this heart to find its way. My peace won't beg you to stay ; [bridge] If ever your truth still remains. Turn around and see. Life rearranged its games. All these lessons in mistakes. Even years may never erase ; [inst-short] ; [chorus] Like a fool begs for supper. I find myself waiting for her. Only to find the broken pieces of my heart. That was needed for my soul to love again ; [outro-short]
204
+ ```
205
+
206
+ - More examples can be found in `sample/test_en_input.jsonl` and `sample/test_zh_input.jsonl`.
207
+
208
+ ### πŸ“ Description Input Format
209
+
210
+ The `descriptions` field allows you to control various musical attributes of the generated song. It can describe up to six musical dimensions: **Gender** (e.g., male, female), **Timbre** (e.g., dark, bright, soft), **Genre** (e.g., pop, jazz, rock), **Emotion** (e.g., sad, energetic, romantic), **Instrument** (e.g., piano, drums, guitar), **BPM** (e.g., the bpm is 120).
211
+
212
+ - All six dimensions are optional β€” you can specify any subset of them.
213
+
214
+ - The order of dimensions is flexible.
215
+
216
+ - Use **commas (`,`)** to separate different attributes.
217
+
218
+ - Although the model supports open vocabulary, we recommend using predefined tags for more stable and reliable performance. A list of commonly supported tags for each dimension is available in the `sample/description/` folder.
219
+
220
+ - Here are a few valid `descriptions` inputs:
221
+
222
+ ```
223
+ - female, dark, pop, sad, piano and drums.
224
+ - male, piano, jazz.
225
+ - male, dark, the bpm is 110.
226
+ ```
227
+
228
+ ### 🎧Prompt Audio Usage Notes
229
+
230
+ - The input audio file can be longer than 10 seconds, but only the first 10 seconds will be used.
231
+ - For best musicality and structure, it is recommended to use the chorus section of a song as the prompt audio.
232
+ - You can use this field to influence genre, instrumentation, rhythm, and voice
233
+
234
+ #### ⚠️ Important Considerations
235
+
236
+ - **Avoid providing both `prompt_audio_path` and `descriptions` at the same time.**
237
+ If both are present, and they convey conflicting information, the model may struggle to follow instructions accurately, resulting in degraded generation quality.
238
+ - If `prompt_audio_path` is not provided, you can instead use `auto_prompt_audio_type` for automatic reference selection.
239
+
240
+ ## Gradio UI
241
+
242
+ You can start up the UI with the following command:
243
+
244
+ ```bash
245
+ sh tools/gradio/run.sh ckpt_path
246
+ ```
247
+
248
+ ## Evaluation Performance
249
+
250
+ ### Chinese
251
+
252
+ <table>
253
+ <tr>
254
+ <th rowspan="2">Model</th>
255
+ <th rowspan="2">Open-Source</th>
256
+ <th rowspan="2">PER↓</th>
257
+ <th colspan="4" style="text-align:center;">Audiobox Aesthetics ↑</th>
258
+ <th colspan="5" style="text-align:center;">SongEval ↑</th>
259
+ </tr>
260
+ <tr>
261
+ <th>CE</th><th>CU</th><th>PC</th><th>PQ</th>
262
+ <th>COH</th><th>MUS</th><th>MEM</th><th>CLA</th><th>NAT</th>
263
+ </tr>
264
+ <tr>
265
+ <td>Suno</td>
266
+ <td>❌</td>
267
+ <td>21.6%</td>
268
+ <td>7.65</td><td>7.86</td><td>5.94</td><td>8.35</td>
269
+ <td><b>4.41</b></td><td><b>4.34</b></td><td><b>4.44</b></td><td><b>4.38</b></td><td><b>4.26</b></td>
270
+ </tr>
271
+ <tr>
272
+ <td>Mureka</td>
273
+ <td>❌</td>
274
+ <td>7.2%</td>
275
+ <td>7.71</td><td>7.83</td><td><b>6.39</b></td><td><b>8.44</b></td>
276
+ <td>4.01</td><td>3.85</td><td>3.73</td><td>3.87</td><td>3.75</td>
277
+ </tr>
278
+ <tr>
279
+ <td>Haimian</td>
280
+ <td>❌</td>
281
+ <td>11.8%</td>
282
+ <td>7.56</td><td>7.85</td><td>5.89</td><td>8.27</td>
283
+ <td>3.69</td><td>3.43</td><td>3.51</td><td>3.52</td><td>3.34</td>
284
+ </tr>
285
+ <tr>
286
+ <td>ACE-Step</td>
287
+ <td>βœ…</td>
288
+ <td>37.1%</td>
289
+ <td>7.37</td><td>7.52</td><td><b>6.26</b></td><td>7.85</td>
290
+ <td>3.68</td><td>3.45</td><td>3.54</td><td>3.48</td><td>3.38</td>
291
+ </tr>
292
+ <tr>
293
+ <td>Diffrhythm-v1,2</td>
294
+ <td>βœ…</td>
295
+ <td>8.78%</td>
296
+ <td>6.91</td><td>7.45</td><td>5.45</td><td>7.99</td>
297
+ <td>2.93</td><td>2.60</td><td>2.70</td><td>2.71</td><td>2.60</td>
298
+ </tr>
299
+ <tr>
300
+ <td>YUE</td>
301
+ <td>βœ…</td>
302
+ <td>14.9%</td>
303
+ <td>7.29</td><td>7.53</td><td>6.19</td><td>7.96</td>
304
+ <td>3.68</td><td>3.43</td><td>3.49</td><td>3.49</td><td>3.42</td>
305
+ </tr>
306
+ <tr>
307
+ <td>SongGeneration-base</td>
308
+ <td>βœ…</td>
309
+ <td>7.2%</td>
310
+ <td>7.78</td><td>7.90</td><td>6.03</td><td>8.42</td>
311
+ <td>3.96</td><td>3.80</td><td>3.85</td><td>3.74</td><td>3.71</td>
312
+ </tr>
313
+ <tr>
314
+ <td>SongGeneration-base-new</td>
315
+ <td>βœ…</td>
316
+ <td><b>5.7%</b></td>
317
+ <td><b>7.82</b></td><td><b>7.94</b></td><td>6.07</td><td>8.43</td>
318
+ <td>4.07</td><td>3.92</td><td>3.98</td><td>3.93</td><td>3.86</td>
319
+ </tr>
320
+ <tr>
321
+ <td>SongGeneration-base-full</td>
322
+ <td>βœ…</td>
323
+ <td>8.4%</td>
324
+ <td><b>7.81</b></td><td><b>7.94</b></td><td>6.07</td><td>8.41</td>
325
+ <td>4.02</td><td>3.88</td><td>3.94</td><td>3.87</td><td>3.80</td>
326
+ </tr>
327
+ <tr>
328
+ <td>SongGeneration-large</td>
329
+ <td>βœ…</td>
330
+ <td><b>5.1%</b></td>
331
+ <td><b>7.82</b></td><td><b>7.95</b></td><td>6.09</td><td><b>8.46</b></td>
332
+ <td><b>4.08</b></td><td><b>3.94</b></td><td><b>4.00</b></td><td><b>3.94</b></td><td><b>3.87</b></td>
333
+ </tr>
334
+ </table>
335
+
336
+ ### English
337
+
338
+ <table>
339
+ <tr>
340
+ <th rowspan="2">Model</th>
341
+ <th rowspan="2">Open-Source</th>
342
+ <th rowspan="2">PER↓</th>
343
+ <th colspan="4" style="text-align:center;">Audiobox Aesthetics ↑</th>
344
+ <th colspan="5" style="text-align:center;">SongEval ↑</th>
345
+ </tr>
346
+ <tr>
347
+ <th>CE</th><th>CU</th><th>PC</th><th>PQ</th>
348
+ <th>COH</th><th>MUS</th><th>MEM</th><th>CLA</th><th>NAT</th>
349
+ </tr>
350
+ <tr>
351
+ <td>Suno</td>
352
+ <td>❌</td>
353
+ <td>15.6%</td>
354
+ <td>7.64</td><td>7.85</td><td>5.84</td><td>8.19</td>
355
+ <td><b>4.49</b></td><td><b>4.35</b></td><td><b>4.47</b></td><td><b>4.35</b></td><td><b>4.23</b></td>
356
+ </tr>
357
+ <tr>
358
+ <td>Mureka</td>
359
+ <td>❌</td>
360
+ <td><b>12.6%</b></td>
361
+ <td>7.71</td><td>7.93</td><td><b>6.46</b></td><td>8.39</td>
362
+ <td>4.06</td><td>3.88</td><td>3.90</td><td>3.90</td><td>3.73</td>
363
+ </tr>
364
+ <tr>
365
+ <td>Haimian</td>
366
+ <td>❌</td>
367
+ <td>26.6%</td>
368
+ <td><b>7.85</b></td><td><b>8.01</b></td><td>5.28</td><td><b>8.44</b></td>
369
+ <td>3.83</td><td>3.68</td><td>3.71</td><td>3.61</td><td>3.45</td>
370
+ </tr>
371
+ <tr>
372
+ <td>ACE-Step</td>
373
+ <td>βœ…</td>
374
+ <td>32.1%</td>
375
+ <td>7.19</td><td>7.37</td><td>6.16</td><td>7.57</td>
376
+ <td>3.59</td><td>3.34</td><td>3.43</td><td>3.36</td><td>3.27</td>
377
+ </tr>
378
+ <tr>
379
+ <td>Diffrhythm-v1.2</td>
380
+ <td>βœ…</td>
381
+ <td>17.8%</td>
382
+ <td>7.02</td><td>7.58</td><td>5.96</td><td>7.81</td>
383
+ <td>3.51</td><td>3.12</td><td>3.32</td><td>3.21</td><td>3.08</td>
384
+ </tr>
385
+ <tr>
386
+ <td>YUE</td>
387
+ <td>βœ…</td>
388
+ <td>27.3%</td>
389
+ <td>7.04</td><td>7.22</td><td>5.89</td><td>7.67</td>
390
+ <td>3.58</td><td>3.24</td><td>3.42</td><td>3.37</td><td>3.30</td>
391
+ </tr>
392
+ <tr>
393
+ <td>SongGeneration-base</td>
394
+ <td>βœ…</td>
395
+ <td>-</td>
396
+ <td>-</td><td>-</td><td>-</td><td>-</td>
397
+ <td>-</td><td>-</td><td>-</td><td>-</td><td>-</td>
398
+ </tr>
399
+ <tr>
400
+ <td>SongGeneration-base-new</td>
401
+ <td>βœ…</td>
402
+ <td>16.2%</td>
403
+ <td><b>7.78</b></td><td>7.97</td><td>6.03</td><td>8.37</td>
404
+ <td>4.05</td><td>3.90</td><td>3.99</td><td>3.91</td><td>3.79</td>
405
+ </tr>
406
+ <tr>
407
+ <td>SongGeneration-base-full</td>
408
+ <td>βœ…</td>
409
+ <td>20.1%</td>
410
+ <td>7.76</td><td>7.98</td><td>5.96</td><td>8.39</td>
411
+ <td>4.02</td><td>3.87</td><td>3.97</td><td>3.86</td><td>3.74</td>
412
+ </tr>
413
+ <tr>
414
+ <td>SongGeneration-large</td>
415
+ <td>βœ…</td>
416
+ <td><b>14.9%</b></td>
417
+ <td><b>7.85</b></td><td><b>8.05</b></td><td><b>6.17</b></td><td><b>8.46</b></td>
418
+ <td><b>4.08</b></td><td><b>3.94</b></td><td><b>4.03</b></td><td><b>3.93</b></td><td><b>3.82</b></td>
419
+ </tr>
420
+ </table>
421
+
422
+ ### Notes
423
+
424
+ 1. The evaluation results of SongGeneration are based on **200 generated songs**, including **100 using descriptions** and **100 using `auto_prompt_audio_type=Auto`**. We also provide **40 English** and **40 Chinese** example inputs in
425
+ `sample/test_en_input.jsonl` and `sample/test_zh_input.jsonl` for reference.
426
+ 2. Since the model attempts to clone the timbre and musical style of the given prompt audio, the choice of prompt audio can significantly affect generation performance, and may lead to fluctuations in the evaluation metrics.
427
+ 3. The format of the input lyrics has a strong impact on generation quality. If the output quality appears suboptimal, please check whether your lyrics format is correct. You can find more examples of properly formatted inputs in `sample/test_en_input.jsonl` and `sample/test_zh_input.jsonl`.
428
+
429
+ ## Gradio UI
430
+
431
+ You can start up the UI with the following command:
432
+
433
+ ```bash
434
+ sh tools/gradio/run.sh ckpt_path
435
+ ```
436
+
437
+ ## Evaluation Performance
438
+
439
+ ### Chinese
440
+
441
+ <table>
442
+ <tr>
443
+ <th rowspan="2">Model</th>
444
+ <th rowspan="2">Open-Source</th>
445
+ <th rowspan="2">PER↓</th>
446
+ <th colspan="4" style="text-align:center;">Audiobox Aesthetics ↑</th>
447
+ <th colspan="5" style="text-align:center;">SongEval ↑</th>
448
+ </tr>
449
+ <tr>
450
+ <th>CE</th><th>CU</th><th>PC</th><th>PQ</th>
451
+ <th>COH</th><th>MUS</th><th>MEM</th><th>CLA</th><th>NAT</th>
452
+ </tr>
453
+ <tr>
454
+ <td>Suno</td>
455
+ <td>❌</td>
456
+ <td>21.6%</td>
457
+ <td>7.65</td><td>7.86</td><td>5.94</td><td>8.35</td>
458
+ <td><b>4.41</b></td><td><b>4.34</b></td><td><b>4.44</b></td><td><b>4.38</b></td><td><b>4.26</b></td>
459
+ </tr>
460
+ <tr>
461
+ <td>Mureka</td>
462
+ <td>❌</td>
463
+ <td>7.2%</td>
464
+ <td>7.71</td><td>7.83</td><td><b>6.39</b></td><td><b>8.44</b></td>
465
+ <td>4.01</td><td>3.85</td><td>3.73</td><td>3.87</td><td>3.75</td>
466
+ </tr>
467
+ <tr>
468
+ <td>Haimian</td>
469
+ <td>❌</td>
470
+ <td>11.8%</td>
471
+ <td>7.56</td><td>7.85</td><td>5.89</td><td>8.27</td>
472
+ <td>3.69</td><td>3.43</td><td>3.51</td><td>3.52</td><td>3.34</td>
473
+ </tr>
474
+ <tr>
475
+ <td>ACE-Step</td>
476
+ <td>βœ…</td>
477
+ <td>37.1%</td>
478
+ <td>7.37</td><td>7.52</td><td><b>6.26</b></td><td>7.85</td>
479
+ <td>3.68</td><td>3.45</td><td>3.54</td><td>3.48</td><td>3.38</td>
480
+ </tr>
481
+ <tr>
482
+ <td>Diffrhythm-v1,2</td>
483
+ <td>βœ…</td>
484
+ <td>8.78%</td>
485
+ <td>6.91</td><td>7.45</td><td>5.45</td><td>7.99</td>
486
+ <td>2.93</td><td>2.60</td><td>2.70</td><td>2.71</td><td>2.60</td>
487
+ </tr>
488
+ <tr>
489
+ <td>YUE</td>
490
+ <td>βœ…</td>
491
+ <td>14.9%</td>
492
+ <td>7.29</td><td>7.53</td><td>6.19</td><td>7.96</td>
493
+ <td>3.68</td><td>3.43</td><td>3.49</td><td>3.49</td><td>3.42</td>
494
+ </tr>
495
+ <tr>
496
+ <td>SongGeneration-base</td>
497
+ <td>βœ…</td>
498
+ <td>7.2%</td>
499
+ <td>7.78</td><td>7.90</td><td>6.03</td><td>8.42</td>
500
+ <td>3.96</td><td>3.80</td><td>3.85</td><td>3.74</td><td>3.71</td>
501
+ </tr>
502
+ <tr>
503
+ <td>SongGeneration-base-new</td>
504
+ <td>βœ…</td>
505
+ <td><b>5.7%</b></td>
506
+ <td><b>7.82</b></td><td><b>7.94</b></td><td>6.07</td><td>8.43</td>
507
+ <td>4.07</td><td>3.92</td><td>3.98</td><td>3.93</td><td>3.86</td>
508
+ </tr>
509
+ <tr>
510
+ <td>SongGeneration-base-full</td>
511
+ <td>βœ…</td>
512
+ <td>8.4%</td>
513
+ <td><b>7.81</b></td><td><b>7.94</b></td><td>6.07</td><td>8.41</td>
514
+ <td>4.02</td><td>3.88</td><td>3.94</td><td>3.87</td><td>3.80</td>
515
+ </tr>
516
+ <tr>
517
+ <td>SongGeneration-large</td>
518
+ <td>βœ…</td>
519
+ <td><b>5.1%</b></td>
520
+ <td><b>7.82</b></td><td><b>7.95</b></td><td>6.09</td><td><b>8.46</b></td>
521
+ <td><b>4.08</b></td><td><b>3.94</b></td><td><b>4.00</b></td><td><b>3.94</b></td><td><b>3.87</b></td>
522
+ </tr>
523
+ </table>
524
+
525
+ ### English
526
+
527
+ <table>
528
+ <tr>
529
+ <th rowspan="2">Model</th>
530
+ <th rowspan="2">Open-Source</th>
531
+ <th rowspan="2">PER↓</th>
532
+ <th colspan="4" style="text-align:center;">Audiobox Aesthetics ↑</th>
533
+ <th colspan="5" style="text-align:center;">SongEval ↑</th>
534
+ </tr>
535
+ <tr>
536
+ <th>CE</th><th>CU</th><th>PC</th><th>PQ</th>
537
+ <th>COH</th><th>MUS</th><th>MEM</th><th>CLA</th><th>NAT</th>
538
+ </tr>
539
+ <tr>
540
+ <td>Suno</td>
541
+ <td>❌</td>
542
+ <td>15.6%</td>
543
+ <td>7.64</td><td>7.85</td><td>5.84</td><td>8.19</td>
544
+ <td><b>4.49</b></td><td><b>4.35</b></td><td><b>4.47</b></td><td><b>4.35</b></td><td><b>4.23</b></td>
545
+ </tr>
546
+ <tr>
547
+ <td>Mureka</td>
548
+ <td>❌</td>
549
+ <td><b>12.6%</b></td>
550
+ <td>7.71</td><td>7.93</td><td><b>6.46</b></td><td>8.39</td>
551
+ <td>4.06</td><td>3.88</td><td>3.90</td><td>3.90</td><td>3.73</td>
552
+ </tr>
553
+ <tr>
554
+ <td>Haimian</td>
555
+ <td>❌</td>
556
+ <td>26.6%</td>
557
+ <td><b>7.85</b></td><td><b>8.01</b></td><td>5.28</td><td><b>8.44</b></td>
558
+ <td>3.83</td><td>3.68</td><td>3.71</td><td>3.61</td><td>3.45</td>
559
+ </tr>
560
+ <tr>
561
+ <td>ACE-Step</td>
562
+ <td>βœ…</td>
563
+ <td>32.1%</td>
564
+ <td>7.19</td><td>7.37</td><td>6.16</td><td>7.57</td>
565
+ <td>3.59</td><td>3.34</td><td>3.43</td><td>3.36</td><td>3.27</td>
566
+ </tr>
567
+ <tr>
568
+ <td>Diffrhythm-v1.2</td>
569
+ <td>βœ…</td>
570
+ <td>17.8%</td>
571
+ <td>7.02</td><td>7.58</td><td>5.96</td><td>7.81</td>
572
+ <td>3.51</td><td>3.12</td><td>3.32</td><td>3.21</td><td>3.08</td>
573
+ </tr>
574
+ <tr>
575
+ <td>YUE</td>
576
+ <td>βœ…</td>
577
+ <td>27.3%</td>
578
+ <td>7.04</td><td>7.22</td><td>5.89</td><td>7.67</td>
579
+ <td>3.58</td><td>3.24</td><td>3.42</td><td>3.37</td><td>3.30</td>
580
+ </tr>
581
+ <tr>
582
+ <td>SongGeneration-base</td>
583
+ <td>βœ…</td>
584
+ <td>-</td>
585
+ <td>-</td><td>-</td><td>-</td><td>-</td>
586
+ <td>-</td><td>-</td><td>-</td><td>-</td><td>-</td>
587
+ </tr>
588
+ <tr>
589
+ <td>SongGeneration-base-new</td>
590
+ <td>βœ…</td>
591
+ <td>16.2%</td>
592
+ <td><b>7.78</b></td><td>7.97</td><td>6.03</td><td>8.37</td>
593
+ <td>4.05</td><td>3.90</td><td>3.99</td><td>3.91</td><td>3.79</td>
594
+ </tr>
595
+ <tr>
596
+ <td>SongGeneration-base-full</td>
597
+ <td>βœ…</td>
598
+ <td>20.1%</td>
599
+ <td>7.76</td><td>7.98</td><td>5.96</td><td>8.39</td>
600
+ <td>4.02</td><td>3.87</td><td>3.97</td><td>3.86</td><td>3.74</td>
601
+ </tr>
602
+ <tr>
603
+ <td>SongGeneration-large</td>
604
+ <td>βœ…</td>
605
+ <td><b>14.9%</b></td>
606
+ <td><b>7.85</b></td><td><b>8.05</b></td><td><b>6.17</b></td><td><b>8.46</b></td>
607
+ <td><b>4.08</b></td><td><b>3.94</b></td><td><b>4.03</b></td><td><b>3.93</b></td><td><b>3.82</b></td>
608
+ </tr>
609
+ </table>
610
+
611
+ ### Notes
612
+
613
+ 1. The evaluation results of SongGeneration are based on **200 generated songs**, including **100 using descriptions** and **100 using `auto_prompt_audio_type=Auto`**. We also provide **40 English** and **40 Chinese** example inputs in
614
+ `sample/test_en_input.jsonl` and `sample/test_zh_input.jsonl` for reference.
615
+ 2. Since the model attempts to clone the timbre and musical style of the given prompt audio, the choice of prompt audio can significantly affect generation performance, and may lead to fluctuations in the evaluation metrics.
616
+ 3. The format of the input lyrics has a strong impact on generation quality. If the output quality appears suboptimal, please check whether your lyrics format is correct. You can find more examples of properly formatted inputs in `sample/test_en_input.jsonl` and `sample/test_zh_input.jsonl`.
617
+
618
+ ## Citation
619
+
620
+ ```
621
+ @article{lei2025levo,
622
+ title={LeVo: High-Quality Song Generation with Multi-Preference Alignment},
623
+ author={Lei, Shun and Xu, Yaoxun and Lin, Zhiwei and Zhang, Huaicheng and Tan, Wei and Chen, Hangting and Yu, Jianwei and Zhang, Yixuan and Yang, Chenyu and Zhu, Haina and Wang, Shuai and Wu, Zhiyong and Yu, Dong},
624
+ journal={arXiv preprint arXiv:2506.07520},
625
+ year={2025}
626
+ }
627
+ ```
628
+
629
+ ## License
630
+
631
+ The code and weights in this repository is released in the [LICENSE](https://github.com/tencent-ailab/songgeneration/blob/main/LICENSE) file.
632
+
633
+ ## Contact
634
+
635
+ Use WeChat or QQ to scan blow QR code.
636
+
637
+ <div style="display: flex; justify-content: center; gap: 20px; width: 100%;">
638
+ <img src="https://github.com/tencent-ailab/songgeneration/raw/main/img/contact.png" height="300" />
639
+ <img src="https://github.com/tencent-ailab/songgeneration/raw/main/img/contactQQ.jpg" height="300" />
640
+ </div>