lewtun's picture
lewtun HF staff
End of training
c07ba30 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - alignment-handbook
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
base_model: mistralai/Mistral-7B-v0.1
model-index:
  - name: zephyr-7b-dpo-qlora-fix
    results: []

zephyr-7b-dpo-qlora-fix

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-qlora on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5279
  • Rewards/chosen: -1.0268
  • Rewards/rejected: -1.8204
  • Rewards/accuracies: 0.7617
  • Rewards/margins: 0.7936
  • Logps/rejected: -429.5990
  • Logps/chosen: -349.1275
  • Logits/rejected: 1.1048
  • Logits/chosen: 1.1977

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5985 0.21 100 0.6167 -0.6622 -0.9981 0.7031 0.3359 -347.3664 -312.6618 -2.0061 -1.9992
0.5302 0.42 200 0.5495 -0.8758 -1.5987 0.7461 0.7229 -407.4292 -334.0204 0.3116 0.4001
0.533 0.63 300 0.5384 -0.8142 -1.5157 0.7617 0.7016 -399.1313 -327.8605 0.5716 0.6809
0.518 0.84 400 0.5276 -1.0554 -1.8498 0.75 0.7944 -432.5438 -351.9892 1.1053 1.1955

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.1