metadata
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: zephyr-7b-dpo-qlora-fix
results: []
zephyr-7b-dpo-qlora-fix
This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-qlora on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.5279
- Rewards/chosen: -1.0268
- Rewards/rejected: -1.8204
- Rewards/accuracies: 0.7617
- Rewards/margins: 0.7936
- Logps/rejected: -429.5990
- Logps/chosen: -349.1275
- Logits/rejected: 1.1048
- Logits/chosen: 1.1977
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5985 | 0.21 | 100 | 0.6167 | -0.6622 | -0.9981 | 0.7031 | 0.3359 | -347.3664 | -312.6618 | -2.0061 | -1.9992 |
0.5302 | 0.42 | 200 | 0.5495 | -0.8758 | -1.5987 | 0.7461 | 0.7229 | -407.4292 | -334.0204 | 0.3116 | 0.4001 |
0.533 | 0.63 | 300 | 0.5384 | -0.8142 | -1.5157 | 0.7617 | 0.7016 | -399.1313 | -327.8605 | 0.5716 | 0.6809 |
0.518 | 0.84 | 400 | 0.5276 | -1.0554 | -1.8498 | 0.75 | 0.7944 | -432.5438 | -351.9892 | 1.1053 | 1.1955 |
Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1