wav2vec2-base-100k-voxpopuli-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base-100k-voxpopuli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9408
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 225 2.1672 0.3
2.1675 2.0 450 2.0095 0.29
2.1675 3.0 675 1.7326 0.29
1.7199 4.0 900 1.4980 0.49
1.7199 5.0 1125 1.4088 0.37
1.3585 6.0 1350 1.2238 0.54
1.3585 7.0 1575 1.3579 0.52
1.0599 8.0 1800 0.9954 0.62
1.0599 9.0 2025 0.9543 0.73
0.8337 10.0 2250 0.9428 0.76
0.8337 11.0 2475 0.8810 0.78
0.5861 12.0 2700 0.7753 0.76
0.5861 13.0 2925 0.9981 0.74
0.3662 14.0 3150 1.1597 0.77
0.3662 15.0 3375 1.0466 0.79
0.277 16.0 3600 1.0763 0.81
0.277 17.0 3825 0.8407 0.87
0.1731 18.0 4050 0.9317 0.86
0.1731 19.0 4275 0.8545 0.87
0.1489 20.0 4500 0.9408 0.86

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.2
  • Datasets 1.18.4
  • Tokenizers 0.11.6
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.