Edit model card

roberta-large-finetuned-clinc

This model is a fine-tuned version of roberta-large on the clinc_oos dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1545
  • Accuracy: 0.9768

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: sagemaker_data_parallel
  • num_devices: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.0548 1.0 120 5.0359 0.0071
4.4725 2.0 240 2.9385 0.7558
1.8924 3.0 360 0.6456 0.9374
0.4552 4.0 480 0.2297 0.9626
0.1589 5.0 600 0.1545 0.9768

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.2+cu113
  • Datasets 1.18.4
  • Tokenizers 0.11.6
Downloads last month
27

Dataset used to train lewtun/roberta-large-finetuned-clinc

Evaluation results