Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: katuni4ka/tiny-random-dbrx
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
  - 40565bcb6081cfa1_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/40565bcb6081cfa1_train_data.json
  type:
    field_instruction: INSTRUCTION
    field_output: RESPONSE
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso/f1358b5e-6257-4803-b6a9-1dc9352373cd
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/40565bcb6081cfa1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a60be3ca-e37a-463a-9b45-ab41a6626eec
wandb_project: new-01
wandb_run: your_name
wandb_runid: a60be3ca-e37a-463a-9b45-ab41a6626eec
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

f1358b5e-6257-4803-b6a9-1dc9352373cd

This model is a fine-tuned version of katuni4ka/tiny-random-dbrx on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
23.0 0.0000 1 11.5
23.0 0.0010 50 11.5
23.0 0.0020 100 11.5
23.0 0.0030 150 11.5
23.0 0.0040 200 11.5

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso/f1358b5e-6257-4803-b6a9-1dc9352373cd

Adapter
(210)
this model