Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Korabbit/llama-2-ko-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d0e1687707e1ee1c_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d0e1687707e1ee1c_train_data.json
  type:
    field_instruction: text
    field_output: label
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/57ef36b7-bd91-4ad5-9df1-154df063d078
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 72GB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/d0e1687707e1ee1c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 57ef36b7-bd91-4ad5-9df1-154df063d078
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 57ef36b7-bd91-4ad5-9df1-154df063d078
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

57ef36b7-bd91-4ad5-9df1-154df063d078

This model is a fine-tuned version of Korabbit/llama-2-ko-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0719

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0013 1 5.2958
3.1585 0.0120 9 2.1231
1.2395 0.0240 18 0.9007
0.5393 0.0359 27 0.3699
0.3405 0.0479 36 0.2260
0.1895 0.0599 45 0.1511
0.159 0.0719 54 0.1205
0.1186 0.0839 63 0.1041
0.1761 0.0958 72 0.0879
0.0767 0.1078 81 0.0805
0.1468 0.1198 90 0.0737
0.0948 0.1318 99 0.0719

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for leixa/57ef36b7-bd91-4ad5-9df1-154df063d078

Adapter
(323)
this model