File size: 8,244 Bytes
5c631a8 a60f012 5c631a8 b3be128 0cbda70 0b0de6c 10bd52b c6bfd28 5c631a8 797d77d 7f38b42 b3be128 0cbda70 03640a9 1fb0027 0b0de6c f30fbb5 6848e1f 6501a5e 10bd52b a2a0ed0 44f444c 5c631a8 e010135 5c631a8 c6bfd28 abc5a8c 5c631a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
base_model: Salesforce/xLAM-8x7b-r
datasets:
- Salesforce/xlam-function-calling-60k
extra_gated_button_content: Agree and access repository
extra_gated_heading: Acknowledge to follow corresponding license to access the repository
inference: false
language:
- en
library_name: gguf
license: cc-by-nc-4.0
pipeline_tag: text-generation
quantized_by: legraphista
tags:
- function-calling
- LLM Agent
- tool-use
- mistral
- pytorch
- quantized
- GGUF
- quantization
- imat
- imatrix
- static
- 16bit
- 8bit
- 6bit
- 5bit
- 4bit
- 3bit
- 2bit
- 1bit
---
# xLAM-8x7b-r-IMat-GGUF
_Llama.cpp imatrix quantization of Salesforce/xLAM-8x7b-r_
Original Model: [Salesforce/xLAM-8x7b-r](https://huggingface.co/Salesforce/xLAM-8x7b-r)
Original dtype: `BF16` (`bfloat16`)
Quantized by: llama.cpp [b3647](https://github.com/ggerganov/llama.cpp/releases/tag/b3647)
IMatrix dataset: [here](https://gist.githubusercontent.com/bartowski1182/eb213dccb3571f863da82e99418f81e8/raw/b2869d80f5c16fd7082594248e80144677736635/calibration_datav3.txt)
- [Files](#files)
- [IMatrix](#imatrix)
- [Common Quants](#common-quants)
- [All Quants](#all-quants)
- [Downloading using huggingface-cli](#downloading-using-huggingface-cli)
- [Inference](#inference)
- [Simple chat template](#simple-chat-template)
- [Chat template with system prompt](#chat-template-with-system-prompt)
- [Llama.cpp](#llama-cpp)
- [FAQ](#faq)
- [Why is the IMatrix not applied everywhere?](#why-is-the-imatrix-not-applied-everywhere)
- [How do I merge a split GGUF?](#how-do-i-merge-a-split-gguf)
---
## Files
### IMatrix
Status: β
Available
Link: [here](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/imatrix.dat)
### Common Quants
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split |
| -------- | ---------- | --------- | ------ | ------------ | -------- |
| [xLAM-8x7b-r.Q8_0/*](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/tree/main/xLAM-8x7b-r.Q8_0) | Q8_0 | 49.63GB | β
Available | βͺ Static | β Yes
| [xLAM-8x7b-r.Q6_K.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q6_K.gguf) | Q6_K | 38.38GB | β
Available | βͺ Static | π¦ No
| [xLAM-8x7b-r.Q4_K.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q4_K.gguf) | Q4_K | 28.45GB | β
Available | π’ IMatrix | π¦ No
| [xLAM-8x7b-r.Q3_K.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q3_K.gguf) | Q3_K | 22.55GB | β
Available | π’ IMatrix | π¦ No
| [xLAM-8x7b-r.Q2_K.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q2_K.gguf) | Q2_K | 17.31GB | β
Available | π’ IMatrix | π¦ No
### All Quants
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split |
| -------- | ---------- | --------- | ------ | ------------ | -------- |
| [xLAM-8x7b-r.BF16/*](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/tree/main/xLAM-8x7b-r.BF16) | BF16 | 93.41GB | β
Available | βͺ Static | β Yes
| [xLAM-8x7b-r.FP16/*](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/tree/main/xLAM-8x7b-r.FP16) | F16 | 93.41GB | β
Available | βͺ Static | β Yes
| [xLAM-8x7b-r.Q8_0/*](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/tree/main/xLAM-8x7b-r.Q8_0) | Q8_0 | 49.63GB | β
Available | βͺ Static | β Yes
| [xLAM-8x7b-r.Q6_K.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q6_K.gguf) | Q6_K | 38.38GB | β
Available | βͺ Static | π¦ No
| [xLAM-8x7b-r.Q5_K.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q5_K.gguf) | Q5_K | 33.23GB | β
Available | βͺ Static | π¦ No
| [xLAM-8x7b-r.Q5_K_S.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q5_K_S.gguf) | Q5_K_S | 32.23GB | β
Available | βͺ Static | π¦ No
| [xLAM-8x7b-r.Q4_K.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q4_K.gguf) | Q4_K | 28.45GB | β
Available | π’ IMatrix | π¦ No
| [xLAM-8x7b-r.Q4_K_S.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q4_K_S.gguf) | Q4_K_S | 26.75GB | β
Available | π’ IMatrix | π¦ No
| [xLAM-8x7b-r.IQ4_NL.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.IQ4_NL.gguf) | IQ4_NL | 26.51GB | β
Available | π’ IMatrix | π¦ No
| [xLAM-8x7b-r.IQ4_XS.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.IQ4_XS.gguf) | IQ4_XS | 25.08GB | β
Available | π’ IMatrix | π¦ No
| [xLAM-8x7b-r.Q3_K.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q3_K.gguf) | Q3_K | 22.55GB | β
Available | π’ IMatrix | π¦ No
| [xLAM-8x7b-r.Q3_K_L.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q3_K_L.gguf) | Q3_K_L | 24.17GB | β
Available | π’ IMatrix | π¦ No
| [xLAM-8x7b-r.Q3_K_S.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q3_K_S.gguf) | Q3_K_S | 20.43GB | β
Available | π’ IMatrix | π¦ No
| xLAM-8x7b-r.IQ3_M | IQ3_M | - | β³ Processing | π’ IMatrix | -
| [xLAM-8x7b-r.IQ3_S.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.IQ3_S.gguf) | IQ3_S | 20.43GB | β
Available | π’ IMatrix | π¦ No
| xLAM-8x7b-r.IQ3_XS | IQ3_XS | - | β³ Processing | π’ IMatrix | -
| xLAM-8x7b-r.IQ3_XXS | IQ3_XXS | - | β³ Processing | π’ IMatrix | -
| [xLAM-8x7b-r.Q2_K.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q2_K.gguf) | Q2_K | 17.31GB | β
Available | π’ IMatrix | π¦ No
| [xLAM-8x7b-r.Q2_K_S.gguf](https://huggingface.co/legraphista/xLAM-8x7b-r-IMat-GGUF/blob/main/xLAM-8x7b-r.Q2_K_S.gguf) | Q2_K_S | 16.03GB | β
Available | π’ IMatrix | π¦ No
| xLAM-8x7b-r.IQ2_M | IQ2_M | - | β³ Processing | π’ IMatrix | -
| xLAM-8x7b-r.IQ2_S | IQ2_S | - | β³ Processing | π’ IMatrix | -
| xLAM-8x7b-r.IQ2_XS | IQ2_XS | - | β³ Processing | π’ IMatrix | -
| xLAM-8x7b-r.IQ2_XXS | IQ2_XXS | - | β³ Processing | π’ IMatrix | -
| xLAM-8x7b-r.IQ1_M | IQ1_M | - | β³ Processing | π’ IMatrix | -
| xLAM-8x7b-r.IQ1_S | IQ1_S | - | β³ Processing | π’ IMatrix | -
## Downloading using huggingface-cli
If you do not have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Download the specific file you want:
```
huggingface-cli download legraphista/xLAM-8x7b-r-IMat-GGUF --include "xLAM-8x7b-r.Q8_0.gguf" --local-dir ./
```
If the model file is big, it has been split into multiple files. In order to download them all to a local folder, run:
```
huggingface-cli download legraphista/xLAM-8x7b-r-IMat-GGUF --include "xLAM-8x7b-r.Q8_0/*" --local-dir ./
# see FAQ for merging GGUF's
```
---
## Inference
### Simple chat template
```
<s> [INST] {user_prompt} [/INST] {assistant_response}</s> [INST] {next_user_prompt} [/INST]
```
### Chat template with system prompt
```
<s> [INST] {system_prompt}
{user_prompt} [/INST] {assistant_response}</s> [INST] {next_user_prompt} [/INST]
```
### Llama.cpp
```
llama.cpp/main -m xLAM-8x7b-r.Q8_0.gguf --color -i -p "prompt here (according to the chat template)"
```
---
## FAQ
### Why is the IMatrix not applied everywhere?
According to [this investigation](https://www.reddit.com/r/LocalLLaMA/comments/1993iro/ggufs_quants_can_punch_above_their_weights_now/), it appears that lower quantizations are the only ones that benefit from the imatrix input (as per hellaswag results).
### How do I merge a split GGUF?
1. Make sure you have `gguf-split` available
- To get hold of `gguf-split`, navigate to https://github.com/ggerganov/llama.cpp/releases
- Download the appropriate zip for your system from the latest release
- Unzip the archive and you should be able to find `gguf-split`
2. Locate your GGUF chunks folder (ex: `xLAM-8x7b-r.Q8_0`)
3. Run `gguf-split --merge xLAM-8x7b-r.Q8_0/xLAM-8x7b-r.Q8_0-00001-of-XXXXX.gguf xLAM-8x7b-r.Q8_0.gguf`
- Make sure to point `gguf-split` to the first chunk of the split.
---
Got a suggestion? Ping me [@legraphista](https://x.com/legraphista)! |