File size: 5,781 Bytes
258aa4a c8884e9 258aa4a 7e6c0e4 8dbce77 cdd3f3d a990185 258aa4a acb652a 7e6c0e4 8dbce77 961a32d 3bc21a7 cdd3f3d 258aa4a a990185 258aa4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
base_model: LLM360/K2
inference: false
language:
- en
library_name: gguf
license: apache-2.0
pipeline_tag: text-generation
quantized_by: legraphista
tags:
- nlp
- llm
- quantized
- GGUF
- imatrix
- quantization
- imat
- imatrix
- static
- 16bit
- 8bit
- 6bit
- 5bit
- 4bit
- 3bit
- 2bit
- 1bit
---
# K2-IMat-GGUF
_Llama.cpp imatrix quantization of LLM360/K2_
Original Model: [LLM360/K2](https://huggingface.co/LLM360/K2)
Original dtype: `FP16` (`float16`)
Quantized by: llama.cpp [b3051](https://github.com/ggerganov/llama.cpp/releases/tag/b3051)
IMatrix dataset: [here](https://gist.githubusercontent.com/bartowski1182/eb213dccb3571f863da82e99418f81e8/raw/b2869d80f5c16fd7082594248e80144677736635/calibration_datav3.txt)
- [Files](#files)
- [IMatrix](#imatrix)
- [Common Quants](#common-quants)
- [All Quants](#all-quants)
- [Downloading using huggingface-cli](#downloading-using-huggingface-cli)
- [Inference](#inference)
- [Llama.cpp](#llama-cpp)
- [FAQ](#faq)
- [Why is the IMatrix not applied everywhere?](#why-is-the-imatrix-not-applied-everywhere)
- [How do I merge a split GGUF?](#how-do-i-merge-a-split-gguf)
---
## Files
### IMatrix
Status: β
Available
Link: [here](https://huggingface.co/legraphista/K2-IMat-GGUF/blob/main/imatrix.dat)
### Common Quants
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split |
| -------- | ---------- | --------- | ------ | ------------ | -------- |
| [K2.Q8_0/*](https://huggingface.co/legraphista/K2-IMat-GGUF/tree/main/K2.Q8_0) | Q8_0 | 69.37GB | β
Available | βͺ Static | β Yes
| [K2.Q6_K/*](https://huggingface.co/legraphista/K2-IMat-GGUF/tree/main/K2.Q6_K) | Q6_K | 53.56GB | β
Available | βͺ Static | β Yes
| [K2.Q4_K.gguf](https://huggingface.co/legraphista/K2-IMat-GGUF/blob/main/K2.Q4_K.gguf) | Q4_K | 39.35GB | β
Available | π’ IMatrix | π¦ No
| [K2.Q3_K.gguf](https://huggingface.co/legraphista/K2-IMat-GGUF/blob/main/K2.Q3_K.gguf) | Q3_K | 31.63GB | β
Available | π’ IMatrix | π¦ No
| K2.Q2_K | Q2_K | - | β³ Processing | π’ IMatrix | -
### All Quants
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split |
| -------- | ---------- | --------- | ------ | ------------ | -------- |
| [K2.FP16/*](https://huggingface.co/legraphista/K2-IMat-GGUF/tree/main/K2.FP16) | F16 | 130.58GB | β
Available | βͺ Static | β Yes
| [K2.Q8_0/*](https://huggingface.co/legraphista/K2-IMat-GGUF/tree/main/K2.Q8_0) | Q8_0 | 69.37GB | β
Available | βͺ Static | β Yes
| [K2.Q6_K/*](https://huggingface.co/legraphista/K2-IMat-GGUF/tree/main/K2.Q6_K) | Q6_K | 53.56GB | β
Available | βͺ Static | β Yes
| [K2.Q5_K/*](https://huggingface.co/legraphista/K2-IMat-GGUF/tree/main/K2.Q5_K) | Q5_K | 46.24GB | β
Available | βͺ Static | β Yes
| [K2.Q5_K_S.gguf](https://huggingface.co/legraphista/K2-IMat-GGUF/blob/main/K2.Q5_K_S.gguf) | Q5_K_S | 44.92GB | β
Available | βͺ Static | π¦ No
| [K2.Q4_K.gguf](https://huggingface.co/legraphista/K2-IMat-GGUF/blob/main/K2.Q4_K.gguf) | Q4_K | 39.35GB | β
Available | π’ IMatrix | π¦ No
| K2.Q4_K_S | Q4_K_S | - | β³ Processing | π’ IMatrix | -
| K2.IQ4_NL | IQ4_NL | - | β³ Processing | π’ IMatrix | -
| K2.IQ4_XS | IQ4_XS | - | β³ Processing | π’ IMatrix | -
| [K2.Q3_K.gguf](https://huggingface.co/legraphista/K2-IMat-GGUF/blob/main/K2.Q3_K.gguf) | Q3_K | 31.63GB | β
Available | π’ IMatrix | π¦ No
| K2.Q3_K_L | Q3_K_L | - | β³ Processing | π’ IMatrix | -
| K2.Q3_K_S | Q3_K_S | - | β³ Processing | π’ IMatrix | -
| K2.IQ3_M | IQ3_M | - | β³ Processing | π’ IMatrix | -
| K2.IQ3_S | IQ3_S | - | β³ Processing | π’ IMatrix | -
| K2.IQ3_XS | IQ3_XS | - | β³ Processing | π’ IMatrix | -
| K2.IQ3_XXS | IQ3_XXS | - | β³ Processing | π’ IMatrix | -
| K2.Q2_K | Q2_K | - | β³ Processing | π’ IMatrix | -
| K2.Q2_K_S | Q2_K_S | - | β³ Processing | π’ IMatrix | -
| K2.IQ2_M | IQ2_M | - | β³ Processing | π’ IMatrix | -
| K2.IQ2_S | IQ2_S | - | β³ Processing | π’ IMatrix | -
| K2.IQ2_XS | IQ2_XS | - | β³ Processing | π’ IMatrix | -
| K2.IQ2_XXS | IQ2_XXS | - | β³ Processing | π’ IMatrix | -
| K2.IQ1_M | IQ1_M | - | β³ Processing | π’ IMatrix | -
| K2.IQ1_S | IQ1_S | - | β³ Processing | π’ IMatrix | -
## Downloading using huggingface-cli
If you do not have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Download the specific file you want:
```
huggingface-cli download legraphista/K2-IMat-GGUF --include "K2.Q8_0.gguf" --local-dir ./
```
If the model file is big, it has been split into multiple files. In order to download them all to a local folder, run:
```
huggingface-cli download legraphista/K2-IMat-GGUF --include "K2.Q8_0/*" --local-dir ./
# see FAQ for merging GGUF's
```
---
## Inference
### Llama.cpp
```
llama.cpp/main -m K2.Q8_0.gguf --color -i -p "prompt here"
```
---
## FAQ
### Why is the IMatrix not applied everywhere?
According to [this investigation](https://www.reddit.com/r/LocalLLaMA/comments/1993iro/ggufs_quants_can_punch_above_their_weights_now/), it appears that lower quantizations are the only ones that benefit from the imatrix input (as per hellaswag results).
### How do I merge a split GGUF?
1. Make sure you have `gguf-split` available
- To get hold of `gguf-split`, navigate to https://github.com/ggerganov/llama.cpp/releases
- Download the appropriate zip for your system from the latest release
- Unzip the archive and you should be able to find `gguf-split`
2. Locate your GGUF chunks folder (ex: `K2.Q8_0`)
3. Run `gguf-split --merge K2.Q8_0/K2.Q8_0-00001-of-XXXXX.gguf K2.Q8_0.gguf`
- Make sure to point `gguf-split` to the first chunk of the split.
---
Got a suggestion? Ping me [@legraphista](https://x.com/legraphista)! |