File size: 6,005 Bytes
56811f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
# Derivated from https://github.com/Lightning-AI/litgpt/blob/main/litgpt/generate/base.py

import os
import sys
import time
from pathlib import Path
from typing import Any, Optional

import torch

# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))

from modello_italia import Italia, ItaliaConfig, Tokenizer

device = 'cuda' if torch.cuda.is_available() else 'cpu'

MI_SYSTEM_PROMPT_SHORT = (
    "Tu sei Modello Italia, un modello di linguaggio naturale addestrato da iGenius."
)


def multinomial_num_samples_1(probs: torch.Tensor) -> torch.Tensor:
    if torch._dynamo.is_compiling():
        # Faster alternative to `torch.multinomial(probs, num_samples=1)` that is also CUDAGraph friendly
        distribution = torch.empty_like(probs).exponential_(1)
        return torch.argmax(probs / distribution, dim=-1, keepdim=True)
    return torch.multinomial(probs, num_samples=1)


def sample(
    logits: torch.Tensor, temperature: float = 1.0, top_k: Optional[int] = None
) -> torch.Tensor:
    logits = logits[0, -1]
    # optionally crop the logits to only the top k options
    if top_k is not None:
        v, i = torch.topk(logits, min(top_k, logits.size(-1)))
        # do not use `torch.where` as in nanogpt because it will repeat top-k collisions
        logits = torch.full_like(logits, float("-inf")).scatter_(-1, i, v)
    # optionally scale the logits and sample from a probability distribution
    if temperature > 0.0:
        probs = torch.nn.functional.softmax(logits / temperature, dim=-1)
        return multinomial_num_samples_1(probs)
    return torch.argmax(logits, dim=-1, keepdim=True)


def next_token(
    model: Italia, input_pos: torch.Tensor, x: torch.Tensor, **kwargs: Any
) -> torch.Tensor:
    logits = model(x, input_pos)
    next = sample(logits, **kwargs)
    return next.to(dtype=x.dtype)


@torch.inference_mode()
def generate(
    model: Italia,
    prompt: torch.Tensor,
    tokenizer: Tokenizer,
    max_returned_tokens: int,
    *,
    temperature: float = 1.0,
    top_k: Optional[int] = None,
    eos_id: Optional[int] = None,
) -> torch.Tensor:
    """Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.

    The implementation of this function is modified from A. Karpathy's nanoGPT.

    Args:
        model: The model to use.
        prompt: Tensor of shape (T) with indices of the prompt sequence.
        max_returned_tokens: The maximum number of tokens to return (given plus generated).
        tokenizer: Tokenizer instance to decode generated tokens
        temperature: Scales the predicted logits by 1 / temperature.
        top_k: If specified, only sample among the tokens with the k highest probabilities.
    """
    T = prompt.size(0)
    assert max_returned_tokens > T

    device = prompt.device
    tokens = [prompt]
    input_pos = torch.tensor([T], device=device)
    token = next_token(
        model,
        torch.arange(0, T, device=device),
        prompt.view(1, -1),
        temperature=temperature,
        top_k=top_k,
    ).clone()
    tokens.append(token)
    for _ in range(2, max_returned_tokens - T + 1):
        token = next_token(
            model, input_pos, token.view(1, -1), temperature=temperature, top_k=top_k
        ).clone()
        tokens.append(token)
        
        if token == tokenizer.eos_id:
            break
        os.system('cls' if os.name == 'nt' else 'clear')
        print(tokenizer.decode(torch.cat(tokens)[T:]))
        input_pos = input_pos.add_(1)
    return torch.cat(tokens)


@torch.inference_mode()
def main(
    prompt: str = "Ciao, chi sei?",
    *,
    num_samples: int = 1,
    max_new_tokens: int = 200, 
    top_k: Optional[int] = 200,
    temperature: float = 0.4,
    checkpoint_dir: Path = Path("."),
) -> None:
    """Generates text samples based on a pre-trained model and tokenizer.

    Args:
        prompt: The prompt string to use for generating the samples.
        num_samples: The number of text samples to generate.
        max_new_tokens: The number of generation steps to take.
        top_k: The number of top most probable tokens to consider in the sampling process.
        temperature: A value controlling the randomness of the sampling process. Higher values result in more random
            samples.
        checkpoint_dir: The checkpoint directory to load.
    """

    config = ItaliaConfig()
    checkpoint_path = checkpoint_dir / "italia.bin"
    tokenizer = Tokenizer(checkpoint_dir)
    prompt = f"<|system|>{MI_SYSTEM_PROMPT_SHORT}\n<|user|>{prompt}\n<|assistant|>"
    encoded = tokenizer.encode(prompt, device=device)
    prompt_length = encoded.size(0)
    max_returned_tokens = prompt_length + max_new_tokens

    print(f"Loading model {str(checkpoint_path)!r}")

    t0 = time.perf_counter()

    model = Italia(config)
    model.load_state_dict(torch.load(checkpoint_path, mmap=True))
    model.to(device)

    print(
        f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.",
        file=sys.stderr,
    )
    model.max_seq_length = max_returned_tokens
    model.set_kv_cache(batch_size=1, device=device)
    model.eval()

    for _ in range(num_samples):
        t0 = time.perf_counter()
        y = generate(
            model,
            encoded,
            tokenizer,
            max_returned_tokens,
            temperature=temperature,
            top_k=top_k,
        )
        t = time.perf_counter() - t0
        for block in model.transformer.h:
            block.attn.kv_cache.reset_parameters()

        #print(tokenizer.decode(y))
        tokens_generated = y.size(0) - prompt_length
        print(f"\nTime for inference: {t:.02f} sec total, {tokens_generated / t:.02f} tokens/sec")


if __name__ == "__main__":
    from jsonargparse import CLI

    torch.set_float32_matmul_precision("high")
    CLI(main)