Edit model card

text_shortening_model_v44

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8836
  • Rouge1: 0.4921
  • Rouge2: 0.2719
  • Rougel: 0.4429
  • Rougelsum: 0.4423
  • Bert precision: 0.8746
  • Bert recall: 0.8761
  • Average word count: 8.7063
  • Max word count: 17
  • Min word count: 5
  • Average token count: 16.2989
  • % shortened texts with length > 12: 8.7302

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.0083 1.0 83 1.4717 0.4904 0.2378 0.426 0.4266 0.8725 0.8732 8.5794 18 4 15.6164 6.3492
0.5702 2.0 166 1.4852 0.4722 0.2421 0.414 0.4143 0.869 0.8653 7.9101 14 4 13.6455 1.5873
0.4588 3.0 249 1.6283 0.5038 0.2733 0.4424 0.4422 0.8732 0.8794 9.0053 16 4 16.8386 8.9947
0.3586 4.0 332 1.6017 0.4965 0.2762 0.4381 0.4383 0.8709 0.8787 9.2381 18 4 16.3042 12.1693
0.2479 5.0 415 1.7497 0.4794 0.2613 0.4295 0.43 0.872 0.8702 8.3228 15 4 15.209 3.1746
0.2296 6.0 498 1.8482 0.4935 0.2739 0.4442 0.4443 0.8737 0.8755 8.7963 17 5 16.2989 7.1429
0.3065 7.0 581 1.9485 0.4765 0.2552 0.4213 0.4212 0.8698 0.8693 8.4683 17 5 15.6005 7.9365
0.2598 8.0 664 2.1608 0.4871 0.2585 0.4316 0.4319 0.8707 0.8736 8.963 16 5 16.6481 9.5238
0.2707 9.0 747 2.0966 0.4758 0.2603 0.4231 0.4246 0.8709 0.8717 8.4841 16 4 15.9312 7.1429
0.2099 10.0 830 2.2721 0.4777 0.2604 0.4246 0.4246 0.8735 0.8724 8.4312 15 4 15.9471 5.5556
0.1668 11.0 913 2.3536 0.4758 0.2541 0.4331 0.4328 0.8721 0.87 8.2857 14 4 15.7725 3.1746
0.1552 12.0 996 2.4572 0.484 0.2562 0.4313 0.4304 0.8726 0.875 8.828 17 4 16.246 7.9365
0.2141 13.0 1079 2.4485 0.4785 0.2631 0.4257 0.4252 0.8678 0.8736 9.1402 19 4 16.6561 11.3757
0.1348 14.0 1162 2.5012 0.4821 0.2613 0.4292 0.4296 0.8706 0.8738 8.8783 17 4 16.5185 10.0529
0.074 15.0 1245 2.5309 0.4915 0.2745 0.445 0.444 0.8764 0.8768 8.6667 16 4 16.2513 9.2593
0.1822 16.0 1328 2.5735 0.4709 0.2566 0.4239 0.4232 0.872 0.8692 8.2063 15 3 15.7249 4.2328
0.086 17.0 1411 2.8597 0.4831 0.2675 0.4373 0.4372 0.8722 0.8743 8.754 16 5 16.5476 8.7302
0.0872 18.0 1494 2.7420 0.4831 0.2677 0.4367 0.4353 0.8724 0.873 8.664 17 5 16.3016 7.672
0.1164 19.0 1577 2.8790 0.4867 0.269 0.4388 0.4381 0.8737 0.8755 8.7725 17 5 16.4418 8.9947
0.1101 20.0 1660 2.8836 0.4921 0.2719 0.4429 0.4423 0.8746 0.8761 8.7063 17 5 16.2989 8.7302

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v44

Finetuned
(50)
this model