Edit model card

Built with Axolotl

Small qlora finetune using Axolotl. Locally tested using wikitext perplexity test and had a small improvement over the base Llama v2 7B base model.

Axolotl config used:

base_model: NousResearch/Llama-2-7b-hf
base_model_config: NousResearch/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
push_dataset_to_hub:
hub_model_id:

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: mhenrichsen/alpaca_2k_test
    type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./checkpoints/llama-2-qlora

adapter: qlora
lora_model_dir:

sequence_len: 4096
max_packed_sequence_len: 4096
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: true
flash_attention:

warmup_steps: 10
eval_steps: 20
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

And then merged with Axolotl via:

accelerate launch scripts/finetune.py configs/your_config.yml --merge_lora --lora_model_dir="./completed-model" --load_in_8bit=False --load_in_4bit=False
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train layoric/llama-2-7B-alpaca-test