Edit model card

MarBERT-finetuned-CrossVal-fnd

This model is a fine-tuned version of UBC-NLP/MARBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3192
  • Macro F1: 0.8548
  • Accuracy: 0.8604
  • Precision: 0.8576
  • Recall: 0.8526

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 123
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Macro F1 Accuracy Precision Recall
0.4936 1.0 1597 0.3589 0.8364 0.8431 0.8401 0.8337
0.3431 2.0 3194 0.3192 0.8548 0.8604 0.8576 0.8526
0.233 3.0 4791 0.3914 0.8502 0.8547 0.8495 0.8509

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
7
Inference Examples
Inference API (serverless) is not available, repository is disabled.