Seagull-13b-translation ๐Ÿ“‡

Seagull-typewriter Seagull-13b-translation is yet another translator model, but carefully considered the following issues from existing translation models.

  • Exact match of newline or space
  • Not using dataset with first letter removed
  • Code
  • Markdown format
  • LaTeX format
  • etc

์ด๋Ÿฐ ์ด์Šˆ๋“ค์„ ์ถฉ๋ถ„ํžˆ ์ฒดํฌํ•˜๊ณ  ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€์ง€๋งŒ, ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•  ๋•Œ๋Š” ์ด๋Ÿฐ ๋ถ€๋ถ„์— ๋Œ€ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ฉด๋ฐ€ํ•˜๊ฒŒ ์‚ดํŽด๋ณด๋Š” ๊ฒƒ์„ ์ถ”์ฒœํ•ฉ๋‹ˆ๋‹ค(์ฝ”๋“œ๊ฐ€ ํฌํ•จ๋œ ํ…์ŠคํŠธ ๋“ฑ).

If you're interested in building large-scale language models to solve a wide variety of problems in a wide variety of domains, you should consider joining Allganize. For a coffee chat or if you have any questions, please do not hesitate to contact me as well! - kuotient.dev@gmail.com

This model was created as a personal experiment, unrelated to the organization I work for.

License

From original model author:

Model Details

Developed by

Jisoo Kim(kuotient)

Base Model

beomi/llama-2-koen-13b

Datasets

  • sharegpt_deepl_ko_translation
  • KOR-OpenOrca-Platypus-v3
  • AIHUB
    • ๊ธฐ์ˆ ๊ณผํ•™ ๋ถ„์•ผ ํ•œ-์˜ ๋ฒˆ์—ญ ๋ณ‘๋ ฌ ๋ง๋ญ‰์น˜ ๋ฐ์ดํ„ฐ
    • ์ผ์ƒ์ƒํ™œ ๋ฐ ๊ตฌ์–ด์ฒด ํ•œ-์˜ ๋ฒˆ์—ญ ๋ณ‘๋ ฌ ๋ง๋ญ‰์น˜ ๋ฐ์ดํ„ฐ

Usage

Format

It follows only ChatML format.

<|im_start|>system
์ฃผ์–ด์ง„ ๋ฌธ์žฅ์„ ํ•œ๊ตญ์–ด๋กœ ๋ฒˆ์—ญํ•˜์„ธ์š”.<|im_end|>
<|im_start|>user
{instruction}<|im_end|>
<|im_start|>assistant
# Don't miss newline here
<|im_start|>system
์ฃผ์–ด์ง„ ๋ฌธ์žฅ์„ ์˜์–ด๋กœ ๋ฒˆ์—ญํ•˜์„ธ์š”.<|im_end|>
<|im_start|>user
{instruction}<|im_end|>
<|im_start|>assistant
# Don't miss newline here

Output example

์›๋ฌธ:

A particle's wave function, $\psi(x)$, is given by $$\psi(x)=\begin{cases} 3x & \text{if } -1 \leq x \leq 0 \ 3(1-x) & \text{if } 0 < x \leq 1 \ 0 & \text{otherwise} \end{cases}$$ Compute the Fourier transform, $\tilde{\psi}(k)$, of the wave function $\psi(x)$ and show that it satisfies the Fourier inversion theorem, i.e., $\psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{\psi}(k) e^{ikx} \mathrm{d}k$.

Seagull-13b-translation:

์ž…์ž์˜ ํŒŒ๋™ ํ•จ์ˆ˜ $\psi(x)$๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ฃผ์–ด์ง‘๋‹ˆ๋‹ค. $$\psi(x)=\begin{cases} 3x & \text{if } -1 \leq x \leq 0 \ 3(1-x) & \text{if } 0 < x \leq 1 \ 0 & \text{otherwise} \end{cases}$$ ํŒŒ๋™ ํ•จ์ˆ˜ $\psi(x)$์˜ ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜ $\tilde{\psi}(k)$๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ํ‘ธ๋ฆฌ์— ๋ฐ˜์ „ ์ •๋ฆฌ, ์ฆ‰ $\psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{\psi}(k) e^{ikx} \mathrm{d}k$๋ฅผ ๋งŒ์กฑํ•ฉ๋‹ˆ๋‹ค.

DeepL:

์ž…์ž์˜ ํŒŒ๋™ ํ•จ์ˆ˜ $\psi(x)$๋Š” $$\psi(x)=\begin{cases}๋กœ ์ฃผ์–ด์ง‘๋‹ˆ๋‹ค. 3x & \text{if } -1 \leq x \leq 0 \ 3(1-x) & \text{if } 0 < x \leq 1 \ 0 & \text{๊ธฐํƒ€} \end{cases}$$ ํŒŒ๋™ ํ•จ์ˆ˜ $\psi(x)$์˜ ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜์ธ $\tilde{\psi}(k)$๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ํ‘ธ๋ฆฌ์— ๋ฐ˜์ „ ์ •๋ฆฌ, ์ฆ‰ $\psi(x) = \frac{1}{\sqrt{2\pi}}๋ฅผ ๋งŒ์กฑํ•จ์„ ์ฆ๋ช…ํ•ฉ๋‹ˆ๋‹ค. \int_{-\infty}^{\infty} \๋ฌผ๊ฒฐํ‘œ{\psi}(k) e^{ikx} \mathrm{d}k$.

...and much more awesome cases with SQL query, code and markdown!

How to

I highly recommend to inference model with vllm. I will write a guide for quick and easy inference if requested. Since, chat_template already contains insturction format above. You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("kuotient/Seagull-13B-translation")
tokenizer = AutoTokenizer.from_pretrained("kuotient/Seagull-13B-translation")
messages = [
    {"role": "system", "content", "์ฃผ์–ด์ง„ ๋ฌธ์žฅ์„ ํ•œ๊ตญ์–ด๋กœ ๋ฒˆ์—ญํ•˜์„ธ์š”."}
    {"role": "user", "content": "Here are five examples of nutritious foods to serve your kids."},
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kuotient/Seagull-13b-translation

Quantizations
1 model

Dataset used to train kuotient/Seagull-13b-translation