destilbert-base-german-cased
This Model is finetuned for sequence classification (binary fake-news classification task) on the german DeFaktS-Dataset. It achieves the following results on the evaluation set:
- Loss: 0.3515
- Accuracy: 0.8526
- F1: 0.8476
- Precision: 0.8474
- Recall: 0.8478
Model description
This Model is finetuned for sequence classification
Dataset
Trained on the DeFactS dataset https://github.com/caisa-lab/DeFaktS-Dataset-Disinformaton-Detection, feature catposfake/catneutral to detect fake news
Intended uses & limitations
Fake news classification
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy@de | F1@de | Precision@de | Recall@de | Loss@de |
---|---|---|---|---|---|---|---|---|
0.6376 | 0.0888 | 50 | 0.5454 | 0.7081 | 0.6726 | 0.7130 | 0.6704 | 0.5453 |
0.4988 | 0.1776 | 100 | 0.4341 | 0.8021 | 0.7930 | 0.7971 | 0.7902 | 0.4341 |
0.4158 | 0.2664 | 150 | 0.4317 | 0.8026 | 0.7901 | 0.8030 | 0.7842 | 0.4317 |
0.4127 | 0.3552 | 200 | 0.3989 | 0.8166 | 0.8108 | 0.8100 | 0.8117 | 0.3989 |
0.4109 | 0.4440 | 250 | 0.3788 | 0.8271 | 0.8191 | 0.8237 | 0.8159 | 0.3787 |
0.3458 | 0.5329 | 300 | 0.3932 | 0.8116 | 0.8089 | 0.8076 | 0.8173 | 0.3932 |
0.3775 | 0.6217 | 350 | 0.3649 | 0.8336 | 0.8237 | 0.8355 | 0.8176 | 0.3649 |
0.3702 | 0.7105 | 400 | 0.3579 | 0.8341 | 0.8286 | 0.8282 | 0.8291 | 0.3579 |
0.3549 | 0.7993 | 450 | 0.3480 | 0.8421 | 0.8365 | 0.8368 | 0.8363 | 0.3480 |
0.3446 | 0.8881 | 500 | 0.3840 | 0.8386 | 0.8252 | 0.8534 | 0.8152 | 0.3840 |
0.3302 | 0.9769 | 550 | 0.3591 | 0.8366 | 0.8322 | 0.8303 | 0.8350 | 0.3591 |
0.2635 | 1.0657 | 600 | 0.3731 | 0.8401 | 0.8327 | 0.8374 | 0.8295 | 0.3731 |
0.2598 | 1.1545 | 650 | 0.3728 | 0.8436 | 0.8380 | 0.8384 | 0.8375 | 0.3728 |
0.2658 | 1.2433 | 700 | 0.3773 | 0.8431 | 0.8301 | 0.8585 | 0.8199 | 0.3773 |
0.2345 | 1.3321 | 750 | 0.3655 | 0.8516 | 0.8417 | 0.8588 | 0.8337 | 0.3656 |
0.2206 | 1.4210 | 800 | 0.3612 | 0.8601 | 0.8536 | 0.8587 | 0.8500 | 0.3612 |
0.2715 | 1.5098 | 850 | 0.3449 | 0.8481 | 0.8427 | 0.8430 | 0.8425 | 0.3450 |
0.2469 | 1.5986 | 900 | 0.3476 | 0.8516 | 0.8449 | 0.8492 | 0.8418 | 0.3476 |
0.2594 | 1.6874 | 950 | 0.3516 | 0.8441 | 0.8396 | 0.8380 | 0.8417 | 0.3516 |
0.2268 | 1.7762 | 1000 | 0.3515 | 0.8526 | 0.8476 | 0.8474 | 0.8478 | 0.3515 |
0.2431 | 1.8650 | 1050 | 0.3636 | 0.8531 | 0.8448 | 0.8554 | 0.8388 | 0.3636 |
0.2417 | 1.9538 | 1100 | 0.3842 | 0.8451 | 0.8333 | 0.8566 | 0.8241 | 0.3842 |
0.1908 | 2.0426 | 1150 | 0.4307 | 0.8576 | 0.8539 | 0.8517 | 0.8573 | 0.4306 |
0.1213 | 2.1314 | 1200 | 0.4600 | 0.8531 | 0.8462 | 0.8515 | 0.8425 | 0.4599 |
0.1422 | 2.2202 | 1250 | 0.4175 | 0.8551 | 0.8497 | 0.8507 | 0.8488 | 0.4174 |
0.1288 | 2.3091 | 1300 | 0.4744 | 0.8551 | 0.8482 | 0.8537 | 0.8444 | 0.4743 |
0.1333 | 2.3979 | 1350 | 0.4399 | 0.8566 | 0.8510 | 0.8526 | 0.8497 | 0.4399 |
0.1234 | 2.4867 | 1400 | 0.4777 | 0.8531 | 0.8440 | 0.8580 | 0.8369 | 0.4776 |
0.1409 | 2.5755 | 1450 | 0.4435 | 0.8561 | 0.8489 | 0.8557 | 0.8445 | 0.4434 |
0.1028 | 2.6643 | 1500 | 0.4783 | 0.8521 | 0.8459 | 0.8488 | 0.8436 | 0.4782 |
0.1178 | 2.7531 | 1550 | 0.4530 | 0.8606 | 0.8534 | 0.8612 | 0.8485 | 0.4529 |
0.1343 | 2.8419 | 1600 | 0.4320 | 0.8546 | 0.8490 | 0.8505 | 0.8476 | 0.4320 |
0.1408 | 2.9307 | 1650 | 0.4398 | 0.8541 | 0.8461 | 0.8556 | 0.8406 | 0.4397 |
0.1197 | 3.0195 | 1700 | 0.5015 | 0.8581 | 0.8494 | 0.8632 | 0.8422 | 0.5015 |
0.0603 | 3.1083 | 1750 | 0.6439 | 0.8536 | 0.8449 | 0.8573 | 0.8383 | 0.6438 |
0.0594 | 3.1972 | 1800 | 0.6179 | 0.8541 | 0.8476 | 0.8517 | 0.8445 | 0.6177 |
0.0501 | 3.2860 | 1850 | 0.6482 | 0.8596 | 0.8511 | 0.8642 | 0.8443 | 0.6481 |
0.0582 | 3.3748 | 1900 | 0.6923 | 0.8591 | 0.8506 | 0.8637 | 0.8437 | 0.6921 |
0.0513 | 3.4636 | 1950 | 0.7074 | 0.8511 | 0.8455 | 0.8466 | 0.8444 | 0.7072 |
0.1219 | 3.5524 | 2000 | 0.6395 | 0.8546 | 0.8483 | 0.8519 | 0.8455 | 0.6394 |
0.0643 | 3.6412 | 2050 | 0.6353 | 0.8596 | 0.8540 | 0.8560 | 0.8524 | 0.6351 |
0.0558 | 3.7300 | 2100 | 0.6717 | 0.8561 | 0.8513 | 0.8508 | 0.8519 | 0.6715 |
0.0687 | 3.8188 | 2150 | 0.6898 | 0.8501 | 0.8424 | 0.8499 | 0.8377 | 0.6897 |
0.0667 | 3.9076 | 2200 | 0.6625 | 0.8551 | 0.8482 | 0.8537 | 0.8444 | 0.6625 |
0.0695 | 3.9964 | 2250 | 0.6391 | 0.8561 | 0.8495 | 0.8543 | 0.8460 | 0.6390 |
0.026 | 4.0853 | 2300 | 0.7211 | 0.8566 | 0.8498 | 0.8553 | 0.8461 | 0.7210 |
0.0279 | 4.1741 | 2350 | 0.7191 | 0.8551 | 0.8501 | 0.8500 | 0.8503 | 0.7189 |
0.0315 | 4.2629 | 2400 | 0.7622 | 0.8551 | 0.8480 | 0.8543 | 0.8439 | 0.7621 |
0.0281 | 4.3517 | 2450 | 0.7876 | 0.8561 | 0.8484 | 0.8573 | 0.8430 | 0.7874 |
0.0403 | 4.4405 | 2500 | 0.7719 | 0.8606 | 0.8538 | 0.8600 | 0.8496 | 0.7717 |
0.0238 | 4.5293 | 2550 | 0.7860 | 0.8571 | 0.8503 | 0.8559 | 0.8465 | 0.7858 |
0.0349 | 4.6181 | 2600 | 0.7675 | 0.8536 | 0.8458 | 0.8543 | 0.8407 | 0.7674 |
0.052 | 4.7069 | 2650 | 0.7553 | 0.8536 | 0.8483 | 0.8489 | 0.8477 | 0.7552 |
0.0361 | 4.7957 | 2700 | 0.7740 | 0.8566 | 0.8494 | 0.8565 | 0.8448 | 0.7738 |
0.0462 | 4.8845 | 2750 | 0.7590 | 0.8556 | 0.8490 | 0.8537 | 0.8456 | 0.7588 |
0.0302 | 4.9734 | 2800 | 0.7862 | 0.8551 | 0.8482 | 0.8539 | 0.8442 | 0.7860 |
0.017 | 5.0622 | 2850 | 0.7971 | 0.8571 | 0.8508 | 0.8547 | 0.8478 | 0.7969 |
0.0144 | 5.1510 | 2900 | 0.8138 | 0.8576 | 0.8516 | 0.8545 | 0.8494 | 0.8136 |
0.0095 | 5.2398 | 2950 | 0.8287 | 0.8596 | 0.8532 | 0.8578 | 0.8499 | 0.8285 |
0.0212 | 5.3286 | 3000 | 0.8530 | 0.8571 | 0.8503 | 0.8560 | 0.8463 | 0.8529 |
0.0176 | 5.4174 | 3050 | 0.8345 | 0.8571 | 0.8515 | 0.8533 | 0.8499 | 0.8343 |
0.022 | 5.5062 | 3100 | 0.8400 | 0.8581 | 0.8521 | 0.8552 | 0.8496 | 0.8398 |
0.0261 | 5.5950 | 3150 | 0.8283 | 0.8576 | 0.8519 | 0.8539 | 0.8503 | 0.8280 |
0.0191 | 5.6838 | 3200 | 0.8346 | 0.8566 | 0.8506 | 0.8534 | 0.8483 | 0.8344 |
0.0131 | 5.7726 | 3250 | 0.8382 | 0.8576 | 0.8516 | 0.8546 | 0.8492 | 0.8380 |
0.0084 | 5.8615 | 3300 | 0.8402 | 0.8586 | 0.8528 | 0.8553 | 0.8508 | 0.8400 |
0.0136 | 5.9503 | 3350 | 0.8425 | 0.8581 | 0.8520 | 0.8554 | 0.8494 | 0.8423 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Tokenizers 0.20.3
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.