destilbert-base-german-cased

This Model is finetuned for sequence classification (binary fake-news classification task) on the german DeFaktS-Dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3515
  • Accuracy: 0.8526
  • F1: 0.8476
  • Precision: 0.8474
  • Recall: 0.8478

Model description

This Model is finetuned for sequence classification

Dataset

Trained on the DeFactS dataset https://github.com/caisa-lab/DeFaktS-Dataset-Disinformaton-Detection, feature catposfake/catneutral to detect fake news

Intended uses & limitations

Fake news classification

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy@de F1@de Precision@de Recall@de Loss@de
0.6376 0.0888 50 0.5454 0.7081 0.6726 0.7130 0.6704 0.5453
0.4988 0.1776 100 0.4341 0.8021 0.7930 0.7971 0.7902 0.4341
0.4158 0.2664 150 0.4317 0.8026 0.7901 0.8030 0.7842 0.4317
0.4127 0.3552 200 0.3989 0.8166 0.8108 0.8100 0.8117 0.3989
0.4109 0.4440 250 0.3788 0.8271 0.8191 0.8237 0.8159 0.3787
0.3458 0.5329 300 0.3932 0.8116 0.8089 0.8076 0.8173 0.3932
0.3775 0.6217 350 0.3649 0.8336 0.8237 0.8355 0.8176 0.3649
0.3702 0.7105 400 0.3579 0.8341 0.8286 0.8282 0.8291 0.3579
0.3549 0.7993 450 0.3480 0.8421 0.8365 0.8368 0.8363 0.3480
0.3446 0.8881 500 0.3840 0.8386 0.8252 0.8534 0.8152 0.3840
0.3302 0.9769 550 0.3591 0.8366 0.8322 0.8303 0.8350 0.3591
0.2635 1.0657 600 0.3731 0.8401 0.8327 0.8374 0.8295 0.3731
0.2598 1.1545 650 0.3728 0.8436 0.8380 0.8384 0.8375 0.3728
0.2658 1.2433 700 0.3773 0.8431 0.8301 0.8585 0.8199 0.3773
0.2345 1.3321 750 0.3655 0.8516 0.8417 0.8588 0.8337 0.3656
0.2206 1.4210 800 0.3612 0.8601 0.8536 0.8587 0.8500 0.3612
0.2715 1.5098 850 0.3449 0.8481 0.8427 0.8430 0.8425 0.3450
0.2469 1.5986 900 0.3476 0.8516 0.8449 0.8492 0.8418 0.3476
0.2594 1.6874 950 0.3516 0.8441 0.8396 0.8380 0.8417 0.3516
0.2268 1.7762 1000 0.3515 0.8526 0.8476 0.8474 0.8478 0.3515
0.2431 1.8650 1050 0.3636 0.8531 0.8448 0.8554 0.8388 0.3636
0.2417 1.9538 1100 0.3842 0.8451 0.8333 0.8566 0.8241 0.3842
0.1908 2.0426 1150 0.4307 0.8576 0.8539 0.8517 0.8573 0.4306
0.1213 2.1314 1200 0.4600 0.8531 0.8462 0.8515 0.8425 0.4599
0.1422 2.2202 1250 0.4175 0.8551 0.8497 0.8507 0.8488 0.4174
0.1288 2.3091 1300 0.4744 0.8551 0.8482 0.8537 0.8444 0.4743
0.1333 2.3979 1350 0.4399 0.8566 0.8510 0.8526 0.8497 0.4399
0.1234 2.4867 1400 0.4777 0.8531 0.8440 0.8580 0.8369 0.4776
0.1409 2.5755 1450 0.4435 0.8561 0.8489 0.8557 0.8445 0.4434
0.1028 2.6643 1500 0.4783 0.8521 0.8459 0.8488 0.8436 0.4782
0.1178 2.7531 1550 0.4530 0.8606 0.8534 0.8612 0.8485 0.4529
0.1343 2.8419 1600 0.4320 0.8546 0.8490 0.8505 0.8476 0.4320
0.1408 2.9307 1650 0.4398 0.8541 0.8461 0.8556 0.8406 0.4397
0.1197 3.0195 1700 0.5015 0.8581 0.8494 0.8632 0.8422 0.5015
0.0603 3.1083 1750 0.6439 0.8536 0.8449 0.8573 0.8383 0.6438
0.0594 3.1972 1800 0.6179 0.8541 0.8476 0.8517 0.8445 0.6177
0.0501 3.2860 1850 0.6482 0.8596 0.8511 0.8642 0.8443 0.6481
0.0582 3.3748 1900 0.6923 0.8591 0.8506 0.8637 0.8437 0.6921
0.0513 3.4636 1950 0.7074 0.8511 0.8455 0.8466 0.8444 0.7072
0.1219 3.5524 2000 0.6395 0.8546 0.8483 0.8519 0.8455 0.6394
0.0643 3.6412 2050 0.6353 0.8596 0.8540 0.8560 0.8524 0.6351
0.0558 3.7300 2100 0.6717 0.8561 0.8513 0.8508 0.8519 0.6715
0.0687 3.8188 2150 0.6898 0.8501 0.8424 0.8499 0.8377 0.6897
0.0667 3.9076 2200 0.6625 0.8551 0.8482 0.8537 0.8444 0.6625
0.0695 3.9964 2250 0.6391 0.8561 0.8495 0.8543 0.8460 0.6390
0.026 4.0853 2300 0.7211 0.8566 0.8498 0.8553 0.8461 0.7210
0.0279 4.1741 2350 0.7191 0.8551 0.8501 0.8500 0.8503 0.7189
0.0315 4.2629 2400 0.7622 0.8551 0.8480 0.8543 0.8439 0.7621
0.0281 4.3517 2450 0.7876 0.8561 0.8484 0.8573 0.8430 0.7874
0.0403 4.4405 2500 0.7719 0.8606 0.8538 0.8600 0.8496 0.7717
0.0238 4.5293 2550 0.7860 0.8571 0.8503 0.8559 0.8465 0.7858
0.0349 4.6181 2600 0.7675 0.8536 0.8458 0.8543 0.8407 0.7674
0.052 4.7069 2650 0.7553 0.8536 0.8483 0.8489 0.8477 0.7552
0.0361 4.7957 2700 0.7740 0.8566 0.8494 0.8565 0.8448 0.7738
0.0462 4.8845 2750 0.7590 0.8556 0.8490 0.8537 0.8456 0.7588
0.0302 4.9734 2800 0.7862 0.8551 0.8482 0.8539 0.8442 0.7860
0.017 5.0622 2850 0.7971 0.8571 0.8508 0.8547 0.8478 0.7969
0.0144 5.1510 2900 0.8138 0.8576 0.8516 0.8545 0.8494 0.8136
0.0095 5.2398 2950 0.8287 0.8596 0.8532 0.8578 0.8499 0.8285
0.0212 5.3286 3000 0.8530 0.8571 0.8503 0.8560 0.8463 0.8529
0.0176 5.4174 3050 0.8345 0.8571 0.8515 0.8533 0.8499 0.8343
0.022 5.5062 3100 0.8400 0.8581 0.8521 0.8552 0.8496 0.8398
0.0261 5.5950 3150 0.8283 0.8576 0.8519 0.8539 0.8503 0.8280
0.0191 5.6838 3200 0.8346 0.8566 0.8506 0.8534 0.8483 0.8344
0.0131 5.7726 3250 0.8382 0.8576 0.8516 0.8546 0.8492 0.8380
0.0084 5.8615 3300 0.8402 0.8586 0.8528 0.8553 0.8508 0.8400
0.0136 5.9503 3350 0.8425 0.8581 0.8520 0.8554 0.8494 0.8423

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.1+cu121
  • Tokenizers 0.20.3
Downloads last month
6
Safetensors
Model size
67.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.