YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Model
albert-xlarge-v2
fine-tuned on SQuAD V2
using run_squad.py
Training Parameters
Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb
BASE_MODEL=albert-xlarge-v2
python run_squad.py \
--version_2_with_negative \
--model_type albert \
--model_name_or_path $BASE_MODEL \
--output_dir $OUTPUT_MODEL \
--do_eval \
--do_lower_case \
--train_file $SQUAD_DIR/train-v2.0.json \
--predict_file $SQUAD_DIR/dev-v2.0.json \
--per_gpu_train_batch_size 3 \
--per_gpu_eval_batch_size 64 \
--learning_rate 3e-5 \
--num_train_epochs 3.0 \
--max_seq_length 384 \
--doc_stride 128 \
--save_steps 2000 \
--threads 24 \
--warmup_steps 814 \
--gradient_accumulation_steps 4 \
--fp16 \
--do_train
Evaluation
Evaluation on the dev set. I did not sweep for best threshold.
val | |
---|---|
exact | 84.41842836688285 |
f1 | 87.4628460501696 |
total | 11873.0 |
HasAns_exact | 80.68488529014844 |
HasAns_f1 | 86.78245127423482 |
HasAns_total | 5928.0 |
NoAns_exact | 88.1412952060555 |
NoAns_f1 | 88.1412952060555 |
NoAns_total | 5945.0 |
best_exact | 84.41842836688285 |
best_exact_thresh | 0.0 |
best_f1 | 87.46284605016956 |
best_f1_thresh | 0.0 |
Usage
See huggingface documentation. Training on SQuAD V2
allows the model to score if a paragraph contains an answer:
start_scores, end_scores = model(input_ids)
span_scores = start_scores.softmax(dim=1).log()[:,:,None] + end_scores.softmax(dim=1).log()[:,None,:]
ignore_score = span_scores[:,0,0] #no answer scores
- Downloads last month
- 535
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.