File size: 1,714 Bytes
0253255 6ba38f7 256397a 6ba38f7 0253255 6ba38f7 256397a 831db48 2f1beaa 831db48 6ba38f7 256397a 0253255 6ba38f7 0253255 6ba38f7 0253255 256397a 0253255 2f1beaa 256397a 0253255 6ba38f7 580fd1c 6ba38f7 0253255 6ba38f7 2f1beaa 0253255 6ba38f7 0253255 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- rotten_tomatoes
metrics:
- accuracy
model-index:
- name: my_awesome_model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: rotten_tomatoes
type: rotten_tomatoes
config: default
split: train[:3000]
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the rotten_tomatoes dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0054
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 80
- eval_batch_size: 80
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 30 | 0.0107 | 1.0 |
| No log | 2.0 | 60 | 0.0054 | 1.0 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|