dataset_infos_midm

This model is a fine-tuned version of KT-AI/midm-bitext-S-7B-inst-v1 on an unknown dataset.

Model description

Midm은 KTκ°€ κ°œλ°œν•œ μ‚¬μ „ν•™μŠ΅ ν•œκ΅­μ–΄-μ˜μ–΄ μ–Έμ–΄λͺ¨λΈ μž…λ‹ˆλ‹€. λ¬Έμžμ—΄μ„ μž…λ ₯으둜 ν•˜λ©°, λ¬Έμžμ—΄μ„ μƒμ„±ν•©λ‹ˆλ‹€. ν•΄λ‹Ή λͺ¨λΈ(KT-AI/midm-bitext-S-7B-inst-v1)을 베이슀 λͺ¨λΈλ‘œ ν•˜μ—¬ λ―Έμ„ΈνŠœλ‹μ„ μ§„ν–‰ν•˜μ˜€μŠ΅λ‹ˆλ‹€.

Midm is a pre-trained Korean-English language model developed by KT. It takes text as input and creates text. We fine-tuned the model based on KT-AI/midm-bitext-S-7B-inst-v1.

Intended uses & limitations

nsmc λ°μ΄ν„°μ…‹μ˜ μ‚¬μš©μžκ°€ μž…λ ₯ν•œ 리뷰 λ¬Έμž₯을 λΆ„λ₯˜ν•˜λŠ” μ—μ΄μ „νŠΈμ΄λ‹€. μ‚¬μš©μž 리뷰 λ¬Έμž₯μœΌλ‘œλΆ€ν„° '긍정' λ˜λŠ” 'λΆ€μ •'을 νŒλ‹¨ν•©λ‹ˆλ‹€.

This is an agent that classifies user-input review sentences from NSMC dataset. It determines whether the user review sentences are 'positive' or 'negative'.

Training and test data

Training 및 test λ°μ΄ν„°λŠ” nsmc 데이터 μ…‹μ—μ„œ λ‘œλ”©ν•΄ μ‚¬μš©ν•©λ‹ˆλ‹€. (elvaluation λ°μ΄ν„°λŠ” μ‚¬μš©ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.)

We load and use training and test data from the NSMC dataset. (We do not use an evaluation data.)

Training procedure

μ‚¬μš©μžμ˜ μ˜ν™” 리뷰 λ¬Έμž₯을 μž…λ ₯으둜 λ°›μ•„ λ¬Έμž₯을 '긍정(1)' λ˜λŠ” 'λΆ€μ •(0)'으둜 λΆ„λ₯˜ν•©λ‹ˆλ‹€.

Accepts movie review sentences from the user as input and classifies the sentences as 'Positive (1)' or 'Negative (0)'.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

  • The following are the results considering incorrectly generated words(e.g., μ •, ' ').

    • Binary Confusion Matrix

      TP TN
      PP 443 49
      PN 57 451
    • Accuracy: 0.894

  • The following are the results without considering incorrectly generated words as wrong(e.g., μ •, ' ').

    • Binary Confusion Matrix

      TP TN
      PP 443 38
      PN 44 451
    • Accuracy: 0.916

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for kjh01/dataset_infos_midm

Finetuned
(11)
this model