kishizaki-sci
commited on
Upload inference_vLLM.ipynb
Browse files- inference_vLLM.ipynb +1349 -0
inference_vLLM.ipynb
ADDED
@@ -0,0 +1,1349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "e0538a90-61d8-4bd0-b2f7-e08e69b32295",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Collecting vllm\n",
|
14 |
+
" Downloading vllm-0.6.4.post1-cp38-abi3-manylinux1_x86_64.whl.metadata (10 kB)\n",
|
15 |
+
"Requirement already satisfied: psutil in /usr/local/lib/python3.11/dist-packages (from vllm) (6.0.0)\n",
|
16 |
+
"Collecting sentencepiece (from vllm)\n",
|
17 |
+
" Downloading sentencepiece-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.7 kB)\n",
|
18 |
+
"Requirement already satisfied: numpy<2.0.0 in /usr/local/lib/python3.11/dist-packages (from vllm) (1.26.3)\n",
|
19 |
+
"Requirement already satisfied: requests>=2.26.0 in /usr/local/lib/python3.11/dist-packages (from vllm) (2.32.3)\n",
|
20 |
+
"Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from vllm) (4.67.1)\n",
|
21 |
+
"Collecting py-cpuinfo (from vllm)\n",
|
22 |
+
" Downloading py_cpuinfo-9.0.0-py3-none-any.whl.metadata (794 bytes)\n",
|
23 |
+
"Requirement already satisfied: transformers>=4.45.2 in /usr/local/lib/python3.11/dist-packages (from vllm) (4.47.0.dev0)\n",
|
24 |
+
"Requirement already satisfied: tokenizers>=0.19.1 in /usr/local/lib/python3.11/dist-packages (from vllm) (0.20.3)\n",
|
25 |
+
"Collecting protobuf (from vllm)\n",
|
26 |
+
" Downloading protobuf-5.29.1-cp38-abi3-manylinux2014_x86_64.whl.metadata (592 bytes)\n",
|
27 |
+
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.11/dist-packages (from vllm) (3.11.8)\n",
|
28 |
+
"Collecting openai>=1.45.0 (from vllm)\n",
|
29 |
+
" Downloading openai-1.57.0-py3-none-any.whl.metadata (24 kB)\n",
|
30 |
+
"Collecting uvicorn[standard] (from vllm)\n",
|
31 |
+
" Downloading uvicorn-0.32.1-py3-none-any.whl.metadata (6.6 kB)\n",
|
32 |
+
"Collecting pydantic>=2.9 (from vllm)\n",
|
33 |
+
" Downloading pydantic-2.10.3-py3-none-any.whl.metadata (172 kB)\n",
|
34 |
+
"Requirement already satisfied: pillow in /usr/local/lib/python3.11/dist-packages (from vllm) (10.2.0)\n",
|
35 |
+
"Requirement already satisfied: prometheus-client>=0.18.0 in /usr/local/lib/python3.11/dist-packages (from vllm) (0.21.0)\n",
|
36 |
+
"Collecting prometheus-fastapi-instrumentator>=7.0.0 (from vllm)\n",
|
37 |
+
" Downloading prometheus_fastapi_instrumentator-7.0.0-py3-none-any.whl.metadata (13 kB)\n",
|
38 |
+
"Collecting tiktoken>=0.6.0 (from vllm)\n",
|
39 |
+
" Downloading tiktoken-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.6 kB)\n",
|
40 |
+
"Collecting lm-format-enforcer<0.11,>=0.10.9 (from vllm)\n",
|
41 |
+
" Downloading lm_format_enforcer-0.10.9-py3-none-any.whl.metadata (17 kB)\n",
|
42 |
+
"Collecting outlines<0.1,>=0.0.43 (from vllm)\n",
|
43 |
+
" Downloading outlines-0.0.46-py3-none-any.whl.metadata (15 kB)\n",
|
44 |
+
"Collecting typing-extensions>=4.10 (from vllm)\n",
|
45 |
+
" Downloading typing_extensions-4.12.2-py3-none-any.whl.metadata (3.0 kB)\n",
|
46 |
+
"Requirement already satisfied: filelock>=3.10.4 in /usr/local/lib/python3.11/dist-packages (from vllm) (3.13.1)\n",
|
47 |
+
"Collecting partial-json-parser (from vllm)\n",
|
48 |
+
" Downloading partial_json_parser-0.2.1.1.post4-py3-none-any.whl.metadata (6.2 kB)\n",
|
49 |
+
"Requirement already satisfied: pyzmq in /usr/local/lib/python3.11/dist-packages (from vllm) (24.0.1)\n",
|
50 |
+
"Collecting msgspec (from vllm)\n",
|
51 |
+
" Downloading msgspec-0.18.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.9 kB)\n",
|
52 |
+
"Collecting gguf==0.10.0 (from vllm)\n",
|
53 |
+
" Downloading gguf-0.10.0-py3-none-any.whl.metadata (3.5 kB)\n",
|
54 |
+
"Requirement already satisfied: importlib-metadata in /usr/lib/python3/dist-packages (from vllm) (4.6.4)\n",
|
55 |
+
"Collecting mistral-common>=1.5.0 (from mistral-common[opencv]>=1.5.0->vllm)\n",
|
56 |
+
" Downloading mistral_common-1.5.1-py3-none-any.whl.metadata (4.6 kB)\n",
|
57 |
+
"Requirement already satisfied: pyyaml in /usr/local/lib/python3.11/dist-packages (from vllm) (6.0.2)\n",
|
58 |
+
"Collecting einops (from vllm)\n",
|
59 |
+
" Downloading einops-0.8.0-py3-none-any.whl.metadata (12 kB)\n",
|
60 |
+
"Collecting compressed-tensors==0.8.0 (from vllm)\n",
|
61 |
+
" Downloading compressed_tensors-0.8.0-py3-none-any.whl.metadata (6.8 kB)\n",
|
62 |
+
"Collecting ray>=2.9 (from vllm)\n",
|
63 |
+
" Downloading ray-2.40.0-cp311-cp311-manylinux2014_x86_64.whl.metadata (17 kB)\n",
|
64 |
+
"Collecting nvidia-ml-py>=12.560.30 (from vllm)\n",
|
65 |
+
" Downloading nvidia_ml_py-12.560.30-py3-none-any.whl.metadata (8.6 kB)\n",
|
66 |
+
"Collecting torch==2.5.1 (from vllm)\n",
|
67 |
+
" Downloading torch-2.5.1-cp311-cp311-manylinux1_x86_64.whl.metadata (28 kB)\n",
|
68 |
+
"Collecting torchvision==0.20.1 (from vllm)\n",
|
69 |
+
" Downloading torchvision-0.20.1-cp311-cp311-manylinux1_x86_64.whl.metadata (6.1 kB)\n",
|
70 |
+
"Collecting xformers==0.0.28.post3 (from vllm)\n",
|
71 |
+
" Downloading xformers-0.0.28.post3-cp311-cp311-manylinux_2_28_x86_64.whl.metadata (1.0 kB)\n",
|
72 |
+
"Collecting fastapi!=0.113.*,!=0.114.0,>=0.107.0 (from vllm)\n",
|
73 |
+
" Downloading fastapi-0.115.6-py3-none-any.whl.metadata (27 kB)\n",
|
74 |
+
"Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch==2.5.1->vllm) (3.2.1)\n",
|
75 |
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch==2.5.1->vllm) (3.1.3)\n",
|
76 |
+
"Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from torch==2.5.1->vllm) (2024.2.0)\n",
|
77 |
+
"Collecting nvidia-cuda-nvrtc-cu12==12.4.127 (from torch==2.5.1->vllm)\n",
|
78 |
+
" Downloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
|
79 |
+
"Collecting nvidia-cuda-runtime-cu12==12.4.127 (from torch==2.5.1->vllm)\n",
|
80 |
+
" Downloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
|
81 |
+
"Collecting nvidia-cuda-cupti-cu12==12.4.127 (from torch==2.5.1->vllm)\n",
|
82 |
+
" Downloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
|
83 |
+
"Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.11/dist-packages (from torch==2.5.1->vllm) (9.1.0.70)\n",
|
84 |
+
"Collecting nvidia-cublas-cu12==12.4.5.8 (from torch==2.5.1->vllm)\n",
|
85 |
+
" Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
|
86 |
+
"Collecting nvidia-cufft-cu12==11.2.1.3 (from torch==2.5.1->vllm)\n",
|
87 |
+
" Downloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
|
88 |
+
"Collecting nvidia-curand-cu12==10.3.5.147 (from torch==2.5.1->vllm)\n",
|
89 |
+
" Downloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
|
90 |
+
"Collecting nvidia-cusolver-cu12==11.6.1.9 (from torch==2.5.1->vllm)\n",
|
91 |
+
" Downloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
|
92 |
+
"Collecting nvidia-cusparse-cu12==12.3.1.170 (from torch==2.5.1->vllm)\n",
|
93 |
+
" Downloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
|
94 |
+
"Collecting nvidia-nccl-cu12==2.21.5 (from torch==2.5.1->vllm)\n",
|
95 |
+
" Downloading nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl.metadata (1.8 kB)\n",
|
96 |
+
"Collecting nvidia-nvtx-cu12==12.4.127 (from torch==2.5.1->vllm)\n",
|
97 |
+
" Downloading nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.7 kB)\n",
|
98 |
+
"Collecting nvidia-nvjitlink-cu12==12.4.127 (from torch==2.5.1->vllm)\n",
|
99 |
+
" Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
|
100 |
+
"Collecting triton==3.1.0 (from torch==2.5.1->vllm)\n",
|
101 |
+
" Downloading triton-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.3 kB)\n",
|
102 |
+
"Collecting sympy==1.13.1 (from torch==2.5.1->vllm)\n",
|
103 |
+
" Downloading sympy-1.13.1-py3-none-any.whl.metadata (12 kB)\n",
|
104 |
+
"Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch==2.5.1->vllm) (1.3.0)\n",
|
105 |
+
"Collecting starlette<0.42.0,>=0.40.0 (from fastapi!=0.113.*,!=0.114.0,>=0.107.0->vllm)\n",
|
106 |
+
" Downloading starlette-0.41.3-py3-none-any.whl.metadata (6.0 kB)\n",
|
107 |
+
"Collecting interegular>=0.3.2 (from lm-format-enforcer<0.11,>=0.10.9->vllm)\n",
|
108 |
+
" Downloading interegular-0.3.3-py37-none-any.whl.metadata (3.0 kB)\n",
|
109 |
+
"Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from lm-format-enforcer<0.11,>=0.10.9->vllm) (24.1)\n",
|
110 |
+
"Requirement already satisfied: jsonschema<5.0.0,>=4.21.1 in /usr/local/lib/python3.11/dist-packages (from mistral-common>=1.5.0->mistral-common[opencv]>=1.5.0->vllm) (4.23.0)\n",
|
111 |
+
"Collecting pillow (from vllm)\n",
|
112 |
+
" Downloading pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl.metadata (9.2 kB)\n",
|
113 |
+
"Collecting tiktoken>=0.6.0 (from vllm)\n",
|
114 |
+
" Downloading tiktoken-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.6 kB)\n",
|
115 |
+
"Collecting opencv-python-headless<5.0.0,>=4.0.0 (from mistral-common[opencv]>=1.5.0->vllm)\n",
|
116 |
+
" Downloading opencv_python_headless-4.10.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB)\n",
|
117 |
+
"Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.11/dist-packages (from openai>=1.45.0->vllm) (4.6.0)\n",
|
118 |
+
"Requirement already satisfied: distro<2,>=1.7.0 in /usr/lib/python3/dist-packages (from openai>=1.45.0->vllm) (1.7.0)\n",
|
119 |
+
"Requirement already satisfied: httpx<1,>=0.23.0 in /usr/local/lib/python3.11/dist-packages (from openai>=1.45.0->vllm) (0.27.2)\n",
|
120 |
+
"Collecting jiter<1,>=0.4.0 (from openai>=1.45.0->vllm)\n",
|
121 |
+
" Downloading jiter-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.2 kB)\n",
|
122 |
+
"Requirement already satisfied: sniffio in /usr/local/lib/python3.11/dist-packages (from openai>=1.45.0->vllm) (1.3.1)\n",
|
123 |
+
"Collecting lark (from outlines<0.1,>=0.0.43->vllm)\n",
|
124 |
+
" Downloading lark-1.2.2-py3-none-any.whl.metadata (1.8 kB)\n",
|
125 |
+
"Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.11/dist-packages (from outlines<0.1,>=0.0.43->vllm) (1.6.0)\n",
|
126 |
+
"Collecting cloudpickle (from outlines<0.1,>=0.0.43->vllm)\n",
|
127 |
+
" Downloading cloudpickle-3.1.0-py3-none-any.whl.metadata (7.0 kB)\n",
|
128 |
+
"Collecting diskcache (from outlines<0.1,>=0.0.43->vllm)\n",
|
129 |
+
" Downloading diskcache-5.6.3-py3-none-any.whl.metadata (20 kB)\n",
|
130 |
+
"Collecting numba (from outlines<0.1,>=0.0.43->vllm)\n",
|
131 |
+
" Downloading numba-0.60.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (2.7 kB)\n",
|
132 |
+
"Requirement already satisfied: referencing in /usr/local/lib/python3.11/dist-packages (from outlines<0.1,>=0.0.43->vllm) (0.35.1)\n",
|
133 |
+
"Requirement already satisfied: datasets in /usr/local/lib/python3.11/dist-packages (from outlines<0.1,>=0.0.43->vllm) (3.1.0)\n",
|
134 |
+
"Collecting pycountry (from outlines<0.1,>=0.0.43->vllm)\n",
|
135 |
+
" Downloading pycountry-24.6.1-py3-none-any.whl.metadata (12 kB)\n",
|
136 |
+
"Collecting pyairports (from outlines<0.1,>=0.0.43->vllm)\n",
|
137 |
+
" Downloading pyairports-2.1.1-py3-none-any.whl.metadata (1.7 kB)\n",
|
138 |
+
"Collecting annotated-types>=0.6.0 (from pydantic>=2.9->vllm)\n",
|
139 |
+
" Downloading annotated_types-0.7.0-py3-none-any.whl.metadata (15 kB)\n",
|
140 |
+
"Collecting pydantic-core==2.27.1 (from pydantic>=2.9->vllm)\n",
|
141 |
+
" Downloading pydantic_core-2.27.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.6 kB)\n",
|
142 |
+
"Collecting click>=7.0 (from ray>=2.9->vllm)\n",
|
143 |
+
" Downloading click-8.1.7-py3-none-any.whl.metadata (3.0 kB)\n",
|
144 |
+
"Collecting msgpack<2.0.0,>=1.0.0 (from ray>=2.9->vllm)\n",
|
145 |
+
" Downloading msgpack-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (8.4 kB)\n",
|
146 |
+
"Requirement already satisfied: aiosignal in /usr/local/lib/python3.11/dist-packages (from ray>=2.9->vllm) (1.3.1)\n",
|
147 |
+
"Requirement already satisfied: frozenlist in /usr/local/lib/python3.11/dist-packages (from ray>=2.9->vllm) (1.5.0)\n",
|
148 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.26.0->vllm) (3.3.2)\n",
|
149 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.26.0->vllm) (3.10)\n",
|
150 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.26.0->vllm) (2.2.3)\n",
|
151 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.26.0->vllm) (2024.8.30)\n",
|
152 |
+
"Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.11/dist-packages (from tiktoken>=0.6.0->vllm) (2024.11.6)\n",
|
153 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /usr/local/lib/python3.11/dist-packages (from tokenizers>=0.19.1->vllm) (0.26.3)\n",
|
154 |
+
"Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.11/dist-packages (from transformers>=4.45.2->vllm) (0.4.5)\n",
|
155 |
+
"Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->vllm) (2.4.3)\n",
|
156 |
+
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->vllm) (24.2.0)\n",
|
157 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.11/dist-packages (from aiohttp->vllm) (6.1.0)\n",
|
158 |
+
"Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->vllm) (0.2.0)\n",
|
159 |
+
"Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->vllm) (1.18.0)\n",
|
160 |
+
"Requirement already satisfied: h11>=0.8 in /usr/local/lib/python3.11/dist-packages (from uvicorn[standard]->vllm) (0.14.0)\n",
|
161 |
+
"Collecting httptools>=0.6.3 (from uvicorn[standard]->vllm)\n",
|
162 |
+
" Downloading httptools-0.6.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.6 kB)\n",
|
163 |
+
"Collecting python-dotenv>=0.13 (from uvicorn[standard]->vllm)\n",
|
164 |
+
" Downloading python_dotenv-1.0.1-py3-none-any.whl.metadata (23 kB)\n",
|
165 |
+
"Collecting uvloop!=0.15.0,!=0.15.1,>=0.14.0 (from uvicorn[standard]->vllm)\n",
|
166 |
+
" Downloading uvloop-0.21.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.9 kB)\n",
|
167 |
+
"Collecting watchfiles>=0.13 (from uvicorn[standard]->vllm)\n",
|
168 |
+
" Downloading watchfiles-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.9 kB)\n",
|
169 |
+
"Collecting websockets>=10.4 (from uvicorn[standard]->vllm)\n",
|
170 |
+
" Downloading websockets-14.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB)\n",
|
171 |
+
"Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.11/dist-packages (from httpx<1,>=0.23.0->openai>=1.45.0->vllm) (1.0.5)\n",
|
172 |
+
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.11/dist-packages (from jsonschema<5.0.0,>=4.21.1->mistral-common>=1.5.0->mistral-common[opencv]>=1.5.0->vllm) (2023.12.1)\n",
|
173 |
+
"Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.11/dist-packages (from jsonschema<5.0.0,>=4.21.1->mistral-common>=1.5.0->mistral-common[opencv]>=1.5.0->vllm) (0.20.0)\n",
|
174 |
+
"Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.11/dist-packages (from datasets->outlines<0.1,>=0.0.43->vllm) (18.1.0)\n",
|
175 |
+
"Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.11/dist-packages (from datasets->outlines<0.1,>=0.0.43->vllm) (0.3.8)\n",
|
176 |
+
"Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from datasets->outlines<0.1,>=0.0.43->vllm) (2.2.3)\n",
|
177 |
+
"Requirement already satisfied: xxhash in /usr/local/lib/python3.11/dist-packages (from datasets->outlines<0.1,>=0.0.43->vllm) (3.5.0)\n",
|
178 |
+
"Requirement already satisfied: multiprocess<0.70.17 in /usr/local/lib/python3.11/dist-packages (from datasets->outlines<0.1,>=0.0.43->vllm) (0.70.16)\n",
|
179 |
+
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch==2.5.1->vllm) (2.1.5)\n",
|
180 |
+
"Collecting llvmlite<0.44,>=0.43.0dev0 (from numba->outlines<0.1,>=0.0.43->vllm)\n",
|
181 |
+
" Downloading llvmlite-0.43.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.8 kB)\n",
|
182 |
+
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets->outlines<0.1,>=0.0.43->vllm) (2.9.0.post0)\n",
|
183 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets->outlines<0.1,>=0.0.43->vllm) (2024.2)\n",
|
184 |
+
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets->outlines<0.1,>=0.0.43->vllm) (2024.2)\n",
|
185 |
+
"Requirement already satisfied: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil>=2.8.2->pandas->datasets->outlines<0.1,>=0.0.43->vllm) (1.16.0)\n",
|
186 |
+
"Downloading vllm-0.6.4.post1-cp38-abi3-manylinux1_x86_64.whl (198.9 MB)\n",
|
187 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m198.9/198.9 MB\u001b[0m \u001b[31m117.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
188 |
+
"\u001b[?25hDownloading compressed_tensors-0.8.0-py3-none-any.whl (86 kB)\n",
|
189 |
+
"Downloading gguf-0.10.0-py3-none-any.whl (71 kB)\n",
|
190 |
+
"Downloading torch-2.5.1-cp311-cp311-manylinux1_x86_64.whl (906.5 MB)\n",
|
191 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m906.5/906.5 MB\u001b[0m \u001b[31m85.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
192 |
+
"\u001b[?25hDownloading torchvision-0.20.1-cp311-cp311-manylinux1_x86_64.whl (7.2 MB)\n",
|
193 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.2/7.2 MB\u001b[0m \u001b[31m111.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
194 |
+
"\u001b[?25hDownloading xformers-0.0.28.post3-cp311-cp311-manylinux_2_28_x86_64.whl (16.7 MB)\n",
|
195 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m16.7/16.7 MB\u001b[0m \u001b[31m105.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
196 |
+
"\u001b[?25hDownloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl (363.4 MB)\n",
|
197 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m178.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
198 |
+
"\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (13.8 MB)\n",
|
199 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m61.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m\n",
|
200 |
+
"\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (24.6 MB)\n",
|
201 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m85.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
|
202 |
+
"\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (883 kB)\n",
|
203 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m116.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
204 |
+
"\u001b[?25hDownloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl (211.5 MB)\n",
|
205 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m152.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
206 |
+
"\u001b[?25hDownloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl (56.3 MB)\n",
|
207 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m127.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
208 |
+
"\u001b[?25hDownloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB)\n",
|
209 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m145.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
210 |
+
"\u001b[?25hDownloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB)\n",
|
211 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m134.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
212 |
+
"\u001b[?25hDownloading nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl (188.7 MB)\n",
|
213 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m188.7/188.7 MB\u001b[0m \u001b[31m142.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
214 |
+
"\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n",
|
215 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m151.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
216 |
+
"\u001b[?25hDownloading nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (99 kB)\n",
|
217 |
+
"Downloading sympy-1.13.1-py3-none-any.whl (6.2 MB)\n",
|
218 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.2/6.2 MB\u001b[0m \u001b[31m161.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
219 |
+
"\u001b[?25hDownloading triton-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (209.5 MB)\n",
|
220 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m209.5/209.5 MB\u001b[0m \u001b[31m88.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
221 |
+
"\u001b[?25hDownloading fastapi-0.115.6-py3-none-any.whl (94 kB)\n",
|
222 |
+
"Downloading lm_format_enforcer-0.10.9-py3-none-any.whl (43 kB)\n",
|
223 |
+
"Downloading mistral_common-1.5.1-py3-none-any.whl (6.5 MB)\n",
|
224 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.5/6.5 MB\u001b[0m \u001b[31m167.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
225 |
+
"\u001b[?25hDownloading sentencepiece-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
|
226 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m146.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
227 |
+
"\u001b[?25hDownloading nvidia_ml_py-12.560.30-py3-none-any.whl (40 kB)\n",
|
228 |
+
"Downloading openai-1.57.0-py3-none-any.whl (389 kB)\n",
|
229 |
+
"Downloading outlines-0.0.46-py3-none-any.whl (101 kB)\n",
|
230 |
+
"Downloading pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl (4.5 MB)\n",
|
231 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m148.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
232 |
+
"\u001b[?25hDownloading prometheus_fastapi_instrumentator-7.0.0-py3-none-any.whl (19 kB)\n",
|
233 |
+
"Downloading pydantic-2.10.3-py3-none-any.whl (456 kB)\n",
|
234 |
+
"Downloading pydantic_core-2.27.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB)\n",
|
235 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m180.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
236 |
+
"\u001b[?25hDownloading ray-2.40.0-cp311-cp311-manylinux2014_x86_64.whl (67.0 MB)\n",
|
237 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.0/67.0 MB\u001b[0m \u001b[31m151.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
238 |
+
"\u001b[?25hDownloading protobuf-5.29.1-cp38-abi3-manylinux2014_x86_64.whl (319 kB)\n",
|
239 |
+
"Downloading tiktoken-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB)\n",
|
240 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m153.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
241 |
+
"\u001b[?25hDownloading typing_extensions-4.12.2-py3-none-any.whl (37 kB)\n",
|
242 |
+
"Downloading einops-0.8.0-py3-none-any.whl (43 kB)\n",
|
243 |
+
"Downloading msgspec-0.18.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (209 kB)\n",
|
244 |
+
"Downloading partial_json_parser-0.2.1.1.post4-py3-none-any.whl (9.9 kB)\n",
|
245 |
+
"Downloading py_cpuinfo-9.0.0-py3-none-any.whl (22 kB)\n",
|
246 |
+
"Downloading annotated_types-0.7.0-py3-none-any.whl (13 kB)\n",
|
247 |
+
"Downloading click-8.1.7-py3-none-any.whl (97 kB)\n",
|
248 |
+
"Downloading httptools-0.6.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (459 kB)\n",
|
249 |
+
"Downloading interegular-0.3.3-py37-none-any.whl (23 kB)\n",
|
250 |
+
"Downloading jiter-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (343 kB)\n",
|
251 |
+
"Downloading msgpack-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (403 kB)\n",
|
252 |
+
"Downloading opencv_python_headless-4.10.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.9 MB)\n",
|
253 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.9/49.9 MB\u001b[0m \u001b[31m117.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
|
254 |
+
"\u001b[?25hDownloading python_dotenv-1.0.1-py3-none-any.whl (19 kB)\n",
|
255 |
+
"Downloading starlette-0.41.3-py3-none-any.whl (73 kB)\n",
|
256 |
+
"Downloading uvloop-0.21.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB)\n",
|
257 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.0/4.0 MB\u001b[0m \u001b[31m160.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
258 |
+
"\u001b[?25hDownloading watchfiles-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (442 kB)\n",
|
259 |
+
"Downloading websockets-14.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (168 kB)\n",
|
260 |
+
"Downloading cloudpickle-3.1.0-py3-none-any.whl (22 kB)\n",
|
261 |
+
"Downloading diskcache-5.6.3-py3-none-any.whl (45 kB)\n",
|
262 |
+
"Downloading lark-1.2.2-py3-none-any.whl (111 kB)\n",
|
263 |
+
"Downloading numba-0.60.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.7 MB)\n",
|
264 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.7/3.7 MB\u001b[0m \u001b[31m132.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
265 |
+
"\u001b[?25hDownloading pyairports-2.1.1-py3-none-any.whl (371 kB)\n",
|
266 |
+
"Downloading pycountry-24.6.1-py3-none-any.whl (6.3 MB)\n",
|
267 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.3/6.3 MB\u001b[0m \u001b[31m130.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
268 |
+
"\u001b[?25hDownloading uvicorn-0.32.1-py3-none-any.whl (63 kB)\n",
|
269 |
+
"Downloading llvmlite-0.43.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.9 MB)\n",
|
270 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m43.9/43.9 MB\u001b[0m \u001b[31m168.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m\n",
|
271 |
+
"\u001b[?25hInstalling collected packages: sentencepiece, pyairports, py-cpuinfo, nvidia-ml-py, websockets, uvloop, typing-extensions, triton, sympy, python-dotenv, pycountry, protobuf, pillow, partial-json-parser, opencv-python-headless, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, msgspec, msgpack, llvmlite, lark, jiter, interegular, httptools, gguf, einops, diskcache, cloudpickle, click, annotated-types, watchfiles, uvicorn, tiktoken, starlette, pydantic-core, nvidia-cusparse-cu12, numba, pydantic, prometheus-fastapi-instrumentator, nvidia-cusolver-cu12, torch, ray, openai, mistral-common, lm-format-enforcer, fastapi, xformers, torchvision, outlines, compressed-tensors, vllm\n",
|
272 |
+
" Attempting uninstall: typing-extensions\n",
|
273 |
+
" Found existing installation: typing_extensions 4.9.0\n",
|
274 |
+
" Uninstalling typing_extensions-4.9.0:\n",
|
275 |
+
" Successfully uninstalled typing_extensions-4.9.0\n",
|
276 |
+
" Attempting uninstall: triton\n",
|
277 |
+
" Found existing installation: triton 3.0.0\n",
|
278 |
+
" Uninstalling triton-3.0.0:\n",
|
279 |
+
" Successfully uninstalled triton-3.0.0\n",
|
280 |
+
" Attempting uninstall: sympy\n",
|
281 |
+
" Found existing installation: sympy 1.12\n",
|
282 |
+
" Uninstalling sympy-1.12:\n",
|
283 |
+
" Successfully uninstalled sympy-1.12\n",
|
284 |
+
" Attempting uninstall: pillow\n",
|
285 |
+
" Found existing installation: pillow 10.2.0\n",
|
286 |
+
" Uninstalling pillow-10.2.0:\n",
|
287 |
+
" Successfully uninstalled pillow-10.2.0\n",
|
288 |
+
" Attempting uninstall: nvidia-nvtx-cu12\n",
|
289 |
+
" Found existing installation: nvidia-nvtx-cu12 12.4.99\n",
|
290 |
+
" Uninstalling nvidia-nvtx-cu12-12.4.99:\n",
|
291 |
+
" Successfully uninstalled nvidia-nvtx-cu12-12.4.99\n",
|
292 |
+
" Attempting uninstall: nvidia-nvjitlink-cu12\n",
|
293 |
+
" Found existing installation: nvidia-nvjitlink-cu12 12.4.99\n",
|
294 |
+
" Uninstalling nvidia-nvjitlink-cu12-12.4.99:\n",
|
295 |
+
" Successfully uninstalled nvidia-nvjitlink-cu12-12.4.99\n",
|
296 |
+
" Attempting uninstall: nvidia-nccl-cu12\n",
|
297 |
+
" Found existing installation: nvidia-nccl-cu12 2.20.5\n",
|
298 |
+
" Uninstalling nvidia-nccl-cu12-2.20.5:\n",
|
299 |
+
" Successfully uninstalled nvidia-nccl-cu12-2.20.5\n",
|
300 |
+
" Attempting uninstall: nvidia-curand-cu12\n",
|
301 |
+
" Found existing installation: nvidia-curand-cu12 10.3.5.119\n",
|
302 |
+
" Uninstalling nvidia-curand-cu12-10.3.5.119:\n",
|
303 |
+
" Successfully uninstalled nvidia-curand-cu12-10.3.5.119\n",
|
304 |
+
" Attempting uninstall: nvidia-cufft-cu12\n",
|
305 |
+
" Found existing installation: nvidia-cufft-cu12 11.2.0.44\n",
|
306 |
+
" Uninstalling nvidia-cufft-cu12-11.2.0.44:\n",
|
307 |
+
" Successfully uninstalled nvidia-cufft-cu12-11.2.0.44\n",
|
308 |
+
" Attempting uninstall: nvidia-cuda-runtime-cu12\n",
|
309 |
+
" Found existing installation: nvidia-cuda-runtime-cu12 12.4.99\n",
|
310 |
+
" Uninstalling nvidia-cuda-runtime-cu12-12.4.99:\n",
|
311 |
+
" Successfully uninstalled nvidia-cuda-runtime-cu12-12.4.99\n",
|
312 |
+
" Attempting uninstall: nvidia-cuda-nvrtc-cu12\n",
|
313 |
+
" Found existing installation: nvidia-cuda-nvrtc-cu12 12.4.99\n",
|
314 |
+
" Uninstalling nvidia-cuda-nvrtc-cu12-12.4.99:\n",
|
315 |
+
" Successfully uninstalled nvidia-cuda-nvrtc-cu12-12.4.99\n",
|
316 |
+
" Attempting uninstall: nvidia-cuda-cupti-cu12\n",
|
317 |
+
" Found existing installation: nvidia-cuda-cupti-cu12 12.4.99\n",
|
318 |
+
" Uninstalling nvidia-cuda-cupti-cu12-12.4.99:\n",
|
319 |
+
" Successfully uninstalled nvidia-cuda-cupti-cu12-12.4.99\n",
|
320 |
+
" Attempting uninstall: nvidia-cublas-cu12\n",
|
321 |
+
" Found existing installation: nvidia-cublas-cu12 12.4.2.65\n",
|
322 |
+
" Uninstalling nvidia-cublas-cu12-12.4.2.65:\n",
|
323 |
+
" Successfully uninstalled nvidia-cublas-cu12-12.4.2.65\n",
|
324 |
+
" Attempting uninstall: nvidia-cusparse-cu12\n",
|
325 |
+
" Found existing installation: nvidia-cusparse-cu12 12.3.0.142\n",
|
326 |
+
" Uninstalling nvidia-cusparse-cu12-12.3.0.142:\n",
|
327 |
+
" Successfully uninstalled nvidia-cusparse-cu12-12.3.0.142\n",
|
328 |
+
" Attempting uninstall: nvidia-cusolver-cu12\n",
|
329 |
+
" Found existing installation: nvidia-cusolver-cu12 11.6.0.99\n",
|
330 |
+
" Uninstalling nvidia-cusolver-cu12-11.6.0.99:\n",
|
331 |
+
" Successfully uninstalled nvidia-cusolver-cu12-11.6.0.99\n",
|
332 |
+
" Attempting uninstall: torch\n",
|
333 |
+
" Found existing installation: torch 2.4.1+cu124\n",
|
334 |
+
" Uninstalling torch-2.4.1+cu124:\n",
|
335 |
+
" Successfully uninstalled torch-2.4.1+cu124\n",
|
336 |
+
" Attempting uninstall: torchvision\n",
|
337 |
+
" Found existing installation: torchvision 0.19.1+cu124\n",
|
338 |
+
" Uninstalling torchvision-0.19.1+cu124:\n",
|
339 |
+
" Successfully uninstalled torchvision-0.19.1+cu124\n",
|
340 |
+
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
341 |
+
"torchaudio 2.4.1+cu124 requires torch==2.4.1, but you have torch 2.5.1 which is incompatible.\u001b[0m\u001b[31m\n",
|
342 |
+
"\u001b[0mSuccessfully installed annotated-types-0.7.0 click-8.1.7 cloudpickle-3.1.0 compressed-tensors-0.8.0 diskcache-5.6.3 einops-0.8.0 fastapi-0.115.6 gguf-0.10.0 httptools-0.6.4 interegular-0.3.3 jiter-0.8.0 lark-1.2.2 llvmlite-0.43.0 lm-format-enforcer-0.10.9 mistral-common-1.5.1 msgpack-1.1.0 msgspec-0.18.6 numba-0.60.0 nvidia-cublas-cu12-12.4.5.8 nvidia-cuda-cupti-cu12-12.4.127 nvidia-cuda-nvrtc-cu12-12.4.127 nvidia-cuda-runtime-cu12-12.4.127 nvidia-cufft-cu12-11.2.1.3 nvidia-curand-cu12-10.3.5.147 nvidia-cusolver-cu12-11.6.1.9 nvidia-cusparse-cu12-12.3.1.170 nvidia-ml-py-12.560.30 nvidia-nccl-cu12-2.21.5 nvidia-nvjitlink-cu12-12.4.127 nvidia-nvtx-cu12-12.4.127 openai-1.57.0 opencv-python-headless-4.10.0.84 outlines-0.0.46 partial-json-parser-0.2.1.1.post4 pillow-10.4.0 prometheus-fastapi-instrumentator-7.0.0 protobuf-5.29.1 py-cpuinfo-9.0.0 pyairports-2.1.1 pycountry-24.6.1 pydantic-2.10.3 pydantic-core-2.27.1 python-dotenv-1.0.1 ray-2.40.0 sentencepiece-0.2.0 starlette-0.41.3 sympy-1.13.1 tiktoken-0.7.0 torch-2.5.1 torchvision-0.20.1 triton-3.1.0 typing-extensions-4.12.2 uvicorn-0.32.1 uvloop-0.21.0 vllm-0.6.4.post1 watchfiles-1.0.0 websockets-14.1 xformers-0.0.28.post3\n",
|
343 |
+
"\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable.It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning.\u001b[0m\u001b[33m\n",
|
344 |
+
"\u001b[0m\n",
|
345 |
+
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.3.1\u001b[0m\n",
|
346 |
+
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n"
|
347 |
+
]
|
348 |
+
}
|
349 |
+
],
|
350 |
+
"source": [
|
351 |
+
"!pip install vllm"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"cell_type": "code",
|
356 |
+
"execution_count": 1,
|
357 |
+
"id": "e772542e-467c-481a-9128-8364987a1bd9",
|
358 |
+
"metadata": {},
|
359 |
+
"outputs": [
|
360 |
+
{
|
361 |
+
"name": "stdout",
|
362 |
+
"output_type": "stream",
|
363 |
+
"text": [
|
364 |
+
"Sun Dec 8 01:39:25 2024 \n",
|
365 |
+
"+-----------------------------------------------------------------------------------------+\n",
|
366 |
+
"| NVIDIA-SMI 565.57.01 Driver Version: 565.57.01 CUDA Version: 12.7 |\n",
|
367 |
+
"|-----------------------------------------+------------------------+----------------------+\n",
|
368 |
+
"| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
|
369 |
+
"| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n",
|
370 |
+
"| | | MIG M. |\n",
|
371 |
+
"|=========================================+========================+======================|\n",
|
372 |
+
"| 0 NVIDIA H100 NVL On | 00000000:3C:00.0 Off | 0 |\n",
|
373 |
+
"| N/A 26C P0 62W / 310W | 1MiB / 95830MiB | 0% Default |\n",
|
374 |
+
"| | | Disabled |\n",
|
375 |
+
"+-----------------------------------------+------------------------+----------------------+\n",
|
376 |
+
"| 1 NVIDIA H100 NVL On | 00000000:AE:00.0 Off | 0 |\n",
|
377 |
+
"| N/A 26C P0 59W / 310W | 1MiB / 95830MiB | 0% Default |\n",
|
378 |
+
"| | | Disabled |\n",
|
379 |
+
"+-----------------------------------------+------------------------+----------------------+\n",
|
380 |
+
"| 2 NVIDIA H100 NVL On | 00000000:BD:00.0 Off | 0 |\n",
|
381 |
+
"| N/A 24C P0 60W / 310W | 1MiB / 95830MiB | 0% Default |\n",
|
382 |
+
"| | | Disabled |\n",
|
383 |
+
"+-----------------------------------------+------------------------+----------------------+\n",
|
384 |
+
"| 3 NVIDIA H100 NVL On | 00000000:BE:00.0 Off | 0 |\n",
|
385 |
+
"| N/A 26C P0 60W / 310W | 1MiB / 95830MiB | 0% Default |\n",
|
386 |
+
"| | | Disabled |\n",
|
387 |
+
"+-----------------------------------------+------------------------+----------------------+\n",
|
388 |
+
" \n",
|
389 |
+
"+-----------------------------------------------------------------------------------------+\n",
|
390 |
+
"| Processes: |\n",
|
391 |
+
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
392 |
+
"| ID ID Usage |\n",
|
393 |
+
"|=========================================================================================|\n",
|
394 |
+
"| No running processes found |\n",
|
395 |
+
"+-----------------------------------------------------------------------------------------+\n"
|
396 |
+
]
|
397 |
+
}
|
398 |
+
],
|
399 |
+
"source": [
|
400 |
+
"!nvidia-smi"
|
401 |
+
]
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"cell_type": "code",
|
405 |
+
"execution_count": 2,
|
406 |
+
"id": "2bf7e331-4686-4c0d-ae0f-72cbb79e2e8c",
|
407 |
+
"metadata": {},
|
408 |
+
"outputs": [],
|
409 |
+
"source": [
|
410 |
+
"from vllm import LLM, SamplingParams"
|
411 |
+
]
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"cell_type": "code",
|
415 |
+
"execution_count": 3,
|
416 |
+
"id": "a51d52bc-d60e-412e-a150-20bc0526d20e",
|
417 |
+
"metadata": {},
|
418 |
+
"outputs": [
|
419 |
+
{
|
420 |
+
"data": {
|
421 |
+
"application/vnd.jupyter.widget-view+json": {
|
422 |
+
"model_id": "7c598964dfdb4818aad022b3d085af8d",
|
423 |
+
"version_major": 2,
|
424 |
+
"version_minor": 0
|
425 |
+
},
|
426 |
+
"text/plain": [
|
427 |
+
"config.json: 0%| | 0.00/1.25k [00:00<?, ?B/s]"
|
428 |
+
]
|
429 |
+
},
|
430 |
+
"metadata": {},
|
431 |
+
"output_type": "display_data"
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"name": "stdout",
|
435 |
+
"output_type": "stream",
|
436 |
+
"text": [
|
437 |
+
"INFO 12-08 01:39:53 config.py:350] This model supports multiple tasks: {'generate', 'embedding'}. Defaulting to 'generate'.\n",
|
438 |
+
"INFO 12-08 01:39:53 awq_marlin.py:113] Detected that the model can run with awq_marlin, however you specified quantization=awq explicitly, so forcing awq. Use quantization=awq_marlin for faster inference\n",
|
439 |
+
"WARNING 12-08 01:39:53 config.py:428] awq quantization is not fully optimized yet. The speed can be slower than non-quantized models.\n",
|
440 |
+
"INFO 12-08 01:39:53 config.py:1020] Defaulting to use mp for distributed inference\n",
|
441 |
+
"WARNING 12-08 01:39:53 arg_utils.py:1013] Chunked prefill is enabled by default for models with max_model_len > 32K. Currently, chunked prefill might not work with some features or models. If you encounter any issues, please disable chunked prefill by setting --enable-chunked-prefill=False.\n",
|
442 |
+
"INFO 12-08 01:39:53 config.py:1136] Chunked prefill is enabled with max_num_batched_tokens=512.\n",
|
443 |
+
"INFO 12-08 01:39:53 llm_engine.py:249] Initializing an LLM engine (v0.6.4.post1) with config: model='kishizaki-sci/Llama-3.1-405B-Instruct-AWQ-4bit-JP-EN', speculative_config=None, tokenizer='kishizaki-sci/Llama-3.1-405B-Instruct-AWQ-4bit-JP-EN', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=131072, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=4, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=awq, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=kishizaki-sci/Llama-3.1-405B-Instruct-AWQ-4bit-JP-EN, num_scheduler_steps=1, chunked_prefill_enabled=True multi_step_stream_outputs=True, enable_prefix_caching=False, use_async_output_proc=True, use_cached_outputs=False, chat_template_text_format=string, mm_processor_kwargs=None, pooler_config=None)\n"
|
444 |
+
]
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"data": {
|
448 |
+
"application/vnd.jupyter.widget-view+json": {
|
449 |
+
"model_id": "1f7cc9b8b1b54e97a7638c1fdf2ddcaf",
|
450 |
+
"version_major": 2,
|
451 |
+
"version_minor": 0
|
452 |
+
},
|
453 |
+
"text/plain": [
|
454 |
+
"tokenizer_config.json: 0%| | 0.00/55.4k [00:00<?, ?B/s]"
|
455 |
+
]
|
456 |
+
},
|
457 |
+
"metadata": {},
|
458 |
+
"output_type": "display_data"
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"data": {
|
462 |
+
"application/vnd.jupyter.widget-view+json": {
|
463 |
+
"model_id": "ef6601b681a24fd9a2208a04352df88a",
|
464 |
+
"version_major": 2,
|
465 |
+
"version_minor": 0
|
466 |
+
},
|
467 |
+
"text/plain": [
|
468 |
+
"tokenizer.json: 0%| | 0.00/17.2M [00:00<?, ?B/s]"
|
469 |
+
]
|
470 |
+
},
|
471 |
+
"metadata": {},
|
472 |
+
"output_type": "display_data"
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"data": {
|
476 |
+
"application/vnd.jupyter.widget-view+json": {
|
477 |
+
"model_id": "06e8fb444a9847878c56f24e9856c9e2",
|
478 |
+
"version_major": 2,
|
479 |
+
"version_minor": 0
|
480 |
+
},
|
481 |
+
"text/plain": [
|
482 |
+
"special_tokens_map.json: 0%| | 0.00/325 [00:00<?, ?B/s]"
|
483 |
+
]
|
484 |
+
},
|
485 |
+
"metadata": {},
|
486 |
+
"output_type": "display_data"
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"data": {
|
490 |
+
"application/vnd.jupyter.widget-view+json": {
|
491 |
+
"model_id": "7bef29f785a341a5bada54897d06284e",
|
492 |
+
"version_major": 2,
|
493 |
+
"version_minor": 0
|
494 |
+
},
|
495 |
+
"text/plain": [
|
496 |
+
"generation_config.json: 0%| | 0.00/182 [00:00<?, ?B/s]"
|
497 |
+
]
|
498 |
+
},
|
499 |
+
"metadata": {},
|
500 |
+
"output_type": "display_data"
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"name": "stdout",
|
504 |
+
"output_type": "stream",
|
505 |
+
"text": [
|
506 |
+
"WARNING 12-08 01:39:57 multiproc_gpu_executor.py:56] Reducing Torch parallelism from 72 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed.\n",
|
507 |
+
"INFO 12-08 01:39:57 custom_cache_manager.py:17] Setting Triton cache manager to: vllm.triton_utils.custom_cache_manager:CustomCacheManager\n",
|
508 |
+
"\u001b[1;36m(VllmWorkerProcess pid=729)\u001b[0;0m INFO 12-08 01:39:57 multiproc_worker_utils.py:215] Worker ready; awaiting tasks\n",
|
509 |
+
"INFO 12-08 01:39:57 selector.py:135] Using Flash Attention backend.\n",
|
510 |
+
"\u001b[1;36m(VllmWorkerProcess pid=729)\u001b[0;0m \u001b[1;36m(VllmWorkerProcess pid=730)\u001b[0;0m INFO 12-08 01:39:57 selector.py:135] Using Flash Attention backend.\n",
|
511 |
+
"\u001b[1;36m(VllmWorkerProcess pid=730)\u001b[0;0m INFO 12-08 01:39:57 multiproc_worker_utils.py:215] Worker ready; awaiting tasks\n",
|
512 |
+
"INFO 12-08 01:39:57 selector.py:135] Using Flash Attention backend.\n",
|
513 |
+
"\u001b[1;36m(VllmWorkerProcess pid=731)\u001b[0;0m INFO 12-08 01:39:57 selector.py:135] Using Flash Attention backend.\n",
|
514 |
+
"\u001b[1;36m(VllmWorkerProcess pid=731)\u001b[0;0m INFO 12-08 01:39:57 multiproc_worker_utils.py:215] Worker ready; awaiting tasks\n",
|
515 |
+
"INFO 12-08 01:40:00 utils.py:961] Found nccl from library libnccl.so.2\n",
|
516 |
+
"\u001b[1;36m(VllmWorkerProcess pid=730)\u001b[0;0m INFO 12-08 01:40:00 pynccl.py:69] vLLM is using nccl==2.21.5\n",
|
517 |
+
"\u001b[1;36m(VllmWorkerProcess pid=729)\u001b[0;0m \u001b[1;36m(VllmWorkerProcess pid=731)\u001b[0;0m INFO 12-08 01:40:00 utils.py:961] Found nccl from library libnccl.so.2\n",
|
518 |
+
"INFO 12-08 01:40:00 utils.py:961] Found nccl from library libnccl.so.2\n",
|
519 |
+
"INFO 12-08 01:40:00 utils.py:961] Found nccl from library libnccl.so.2\n",
|
520 |
+
"\u001b[1;36m(VllmWorkerProcess pid=729)\u001b[0;0m \u001b[1;36m(VllmWorkerProcess pid=730)\u001b[0;0m INFO 12-08 01:40:00 pynccl.py:69] vLLM is using nccl==2.21.5\n",
|
521 |
+
"INFO 12-08 01:40:00 pynccl.py:69] vLLM is using nccl==2.21.5\n",
|
522 |
+
"\u001b[1;36m(VllmWorkerProcess pid=731)\u001b[0;0m INFO 12-08 01:40:00 pynccl.py:69] vLLM is using nccl==2.21.5\n",
|
523 |
+
"WARNING 12-08 01:40:01 custom_all_reduce.py:134] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.\n",
|
524 |
+
"\u001b[1;36m(VllmWorkerProcess pid=729)\u001b[0;0m \u001b[1;36m(VllmWorkerProcess pid=730)\u001b[0;0m WARNING 12-08 01:40:01 custom_all_reduce.py:134] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.\n",
|
525 |
+
"WARNING 12-08 01:40:01 custom_all_reduce.py:134] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.\n",
|
526 |
+
"\u001b[1;36m(VllmWorkerProcess pid=731)\u001b[0;0m WARNING 12-08 01:40:01 custom_all_reduce.py:134] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.\n",
|
527 |
+
"INFO 12-08 01:40:01 shm_broadcast.py:236] vLLM message queue communication handle: Handle(connect_ip='127.0.0.1', local_reader_ranks=[1, 2, 3], buffer=<vllm.distributed.device_communicators.shm_broadcast.ShmRingBuffer object at 0x7fe462e95610>, local_subscribe_port=36659, remote_subscribe_port=None)\n",
|
528 |
+
"INFO 12-08 01:40:01 model_runner.py:1072] Starting to load model kishizaki-sci/Llama-3.1-405B-Instruct-AWQ-4bit-JP-EN...\n",
|
529 |
+
"\u001b[1;36m(VllmWorkerProcess pid=729)\u001b[0;0m \u001b[1;36m(VllmWorkerProcess pid=730)\u001b[0;0m \u001b[1;36m(VllmWorkerProcess pid=731)\u001b[0;0m INFO 12-08 01:40:01 model_runner.py:1072] Starting to load model kishizaki-sci/Llama-3.1-405B-Instruct-AWQ-4bit-JP-EN...\n",
|
530 |
+
"INFO 12-08 01:40:01 model_runner.py:1072] Starting to load model kishizaki-sci/Llama-3.1-405B-Instruct-AWQ-4bit-JP-EN...\n",
|
531 |
+
"INFO 12-08 01:40:01 model_runner.py:1072] Starting to load model kishizaki-sci/Llama-3.1-405B-Instruct-AWQ-4bit-JP-EN...\n",
|
532 |
+
"INFO 12-08 01:40:02 weight_utils.py:243] Using model weights format ['*.safetensors']\n",
|
533 |
+
"\u001b[1;36m(VllmWorkerProcess pid=729)\u001b[0;0m INFO 12-08 01:40:02 weight_utils.py:243] Using model weights format ['*.safetensors']\n",
|
534 |
+
"\u001b[1;36m(VllmWorkerProcess pid=730)\u001b[0;0m INFO 12-08 01:40:02 weight_utils.py:243] Using model weights format ['*.safetensors']\n",
|
535 |
+
"\u001b[1;36m(VllmWorkerProcess pid=731)\u001b[0;0m INFO 12-08 01:40:02 weight_utils.py:243] Using model weights format ['*.safetensors']\n"
|
536 |
+
]
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"data": {
|
540 |
+
"application/vnd.jupyter.widget-view+json": {
|
541 |
+
"model_id": "3992e4d9fca34515910b7bf2492a3bc2",
|
542 |
+
"version_major": 2,
|
543 |
+
"version_minor": 0
|
544 |
+
},
|
545 |
+
"text/plain": [
|
546 |
+
"model-00004-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
547 |
+
]
|
548 |
+
},
|
549 |
+
"metadata": {},
|
550 |
+
"output_type": "display_data"
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"data": {
|
554 |
+
"application/vnd.jupyter.widget-view+json": {
|
555 |
+
"model_id": "3e0eec98a2b1418283e0809b0cf9b7ad",
|
556 |
+
"version_major": 2,
|
557 |
+
"version_minor": 0
|
558 |
+
},
|
559 |
+
"text/plain": [
|
560 |
+
"model-00002-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
561 |
+
]
|
562 |
+
},
|
563 |
+
"metadata": {},
|
564 |
+
"output_type": "display_data"
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"data": {
|
568 |
+
"application/vnd.jupyter.widget-view+json": {
|
569 |
+
"model_id": "aef1bf777f134def9e8fdbf6038e9b0f",
|
570 |
+
"version_major": 2,
|
571 |
+
"version_minor": 0
|
572 |
+
},
|
573 |
+
"text/plain": [
|
574 |
+
"model-00006-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
575 |
+
]
|
576 |
+
},
|
577 |
+
"metadata": {},
|
578 |
+
"output_type": "display_data"
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"data": {
|
582 |
+
"application/vnd.jupyter.widget-view+json": {
|
583 |
+
"model_id": "b506d6aed0024cde8f18df0a3e796fbc",
|
584 |
+
"version_major": 2,
|
585 |
+
"version_minor": 0
|
586 |
+
},
|
587 |
+
"text/plain": [
|
588 |
+
"model-00007-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
589 |
+
]
|
590 |
+
},
|
591 |
+
"metadata": {},
|
592 |
+
"output_type": "display_data"
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"data": {
|
596 |
+
"application/vnd.jupyter.widget-view+json": {
|
597 |
+
"model_id": "db9659785e1b49bdbc77298f8d95a746",
|
598 |
+
"version_major": 2,
|
599 |
+
"version_minor": 0
|
600 |
+
},
|
601 |
+
"text/plain": [
|
602 |
+
"model-00008-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
603 |
+
]
|
604 |
+
},
|
605 |
+
"metadata": {},
|
606 |
+
"output_type": "display_data"
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"data": {
|
610 |
+
"application/vnd.jupyter.widget-view+json": {
|
611 |
+
"model_id": "4ac31302b8d94e48996d65295561ea38",
|
612 |
+
"version_major": 2,
|
613 |
+
"version_minor": 0
|
614 |
+
},
|
615 |
+
"text/plain": [
|
616 |
+
"model-00003-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
617 |
+
]
|
618 |
+
},
|
619 |
+
"metadata": {},
|
620 |
+
"output_type": "display_data"
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"data": {
|
624 |
+
"application/vnd.jupyter.widget-view+json": {
|
625 |
+
"model_id": "34494082039e41de94d38168f54e07b4",
|
626 |
+
"version_major": 2,
|
627 |
+
"version_minor": 0
|
628 |
+
},
|
629 |
+
"text/plain": [
|
630 |
+
"model-00005-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
631 |
+
]
|
632 |
+
},
|
633 |
+
"metadata": {},
|
634 |
+
"output_type": "display_data"
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"data": {
|
638 |
+
"application/vnd.jupyter.widget-view+json": {
|
639 |
+
"model_id": "71affa983f584b91b98bddedbc7f894e",
|
640 |
+
"version_major": 2,
|
641 |
+
"version_minor": 0
|
642 |
+
},
|
643 |
+
"text/plain": [
|
644 |
+
"model-00001-of-00044.safetensors: 0%| | 0.00/4.95G [00:00<?, ?B/s]"
|
645 |
+
]
|
646 |
+
},
|
647 |
+
"metadata": {},
|
648 |
+
"output_type": "display_data"
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"data": {
|
652 |
+
"application/vnd.jupyter.widget-view+json": {
|
653 |
+
"model_id": "2e9c94b7b0bc43d8b22785c62d09e264",
|
654 |
+
"version_major": 2,
|
655 |
+
"version_minor": 0
|
656 |
+
},
|
657 |
+
"text/plain": [
|
658 |
+
"model-00009-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
659 |
+
]
|
660 |
+
},
|
661 |
+
"metadata": {},
|
662 |
+
"output_type": "display_data"
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"data": {
|
666 |
+
"application/vnd.jupyter.widget-view+json": {
|
667 |
+
"model_id": "2fddbf414af2494692fc262abf2832b7",
|
668 |
+
"version_major": 2,
|
669 |
+
"version_minor": 0
|
670 |
+
},
|
671 |
+
"text/plain": [
|
672 |
+
"model-00010-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
673 |
+
]
|
674 |
+
},
|
675 |
+
"metadata": {},
|
676 |
+
"output_type": "display_data"
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"data": {
|
680 |
+
"application/vnd.jupyter.widget-view+json": {
|
681 |
+
"model_id": "6e72305ba5cf40269479f81dbb25b69e",
|
682 |
+
"version_major": 2,
|
683 |
+
"version_minor": 0
|
684 |
+
},
|
685 |
+
"text/plain": [
|
686 |
+
"model-00011-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
687 |
+
]
|
688 |
+
},
|
689 |
+
"metadata": {},
|
690 |
+
"output_type": "display_data"
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"data": {
|
694 |
+
"application/vnd.jupyter.widget-view+json": {
|
695 |
+
"model_id": "023fe209088a42a28e7656c3da74343d",
|
696 |
+
"version_major": 2,
|
697 |
+
"version_minor": 0
|
698 |
+
},
|
699 |
+
"text/plain": [
|
700 |
+
"model-00012-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
701 |
+
]
|
702 |
+
},
|
703 |
+
"metadata": {},
|
704 |
+
"output_type": "display_data"
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"data": {
|
708 |
+
"application/vnd.jupyter.widget-view+json": {
|
709 |
+
"model_id": "e20f953f68274473aaba3a3fe9d86591",
|
710 |
+
"version_major": 2,
|
711 |
+
"version_minor": 0
|
712 |
+
},
|
713 |
+
"text/plain": [
|
714 |
+
"model-00013-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
715 |
+
]
|
716 |
+
},
|
717 |
+
"metadata": {},
|
718 |
+
"output_type": "display_data"
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"data": {
|
722 |
+
"application/vnd.jupyter.widget-view+json": {
|
723 |
+
"model_id": "70928ce19e7b4aa38313d2369fe0280f",
|
724 |
+
"version_major": 2,
|
725 |
+
"version_minor": 0
|
726 |
+
},
|
727 |
+
"text/plain": [
|
728 |
+
"model-00014-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
729 |
+
]
|
730 |
+
},
|
731 |
+
"metadata": {},
|
732 |
+
"output_type": "display_data"
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"data": {
|
736 |
+
"application/vnd.jupyter.widget-view+json": {
|
737 |
+
"model_id": "e9f0748b3b954b748cea03d9d7973fd5",
|
738 |
+
"version_major": 2,
|
739 |
+
"version_minor": 0
|
740 |
+
},
|
741 |
+
"text/plain": [
|
742 |
+
"model-00015-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
743 |
+
]
|
744 |
+
},
|
745 |
+
"metadata": {},
|
746 |
+
"output_type": "display_data"
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"data": {
|
750 |
+
"application/vnd.jupyter.widget-view+json": {
|
751 |
+
"model_id": "56a827b4296d4d79a34ff5b095ca7532",
|
752 |
+
"version_major": 2,
|
753 |
+
"version_minor": 0
|
754 |
+
},
|
755 |
+
"text/plain": [
|
756 |
+
"model-00016-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
757 |
+
]
|
758 |
+
},
|
759 |
+
"metadata": {},
|
760 |
+
"output_type": "display_data"
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"data": {
|
764 |
+
"application/vnd.jupyter.widget-view+json": {
|
765 |
+
"model_id": "6bb5e0bd0d09458cb21c84f8c8cb2174",
|
766 |
+
"version_major": 2,
|
767 |
+
"version_minor": 0
|
768 |
+
},
|
769 |
+
"text/plain": [
|
770 |
+
"model-00017-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
771 |
+
]
|
772 |
+
},
|
773 |
+
"metadata": {},
|
774 |
+
"output_type": "display_data"
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"data": {
|
778 |
+
"application/vnd.jupyter.widget-view+json": {
|
779 |
+
"model_id": "d423b03ac7b84064b9fc2c0c86794e31",
|
780 |
+
"version_major": 2,
|
781 |
+
"version_minor": 0
|
782 |
+
},
|
783 |
+
"text/plain": [
|
784 |
+
"model-00018-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
785 |
+
]
|
786 |
+
},
|
787 |
+
"metadata": {},
|
788 |
+
"output_type": "display_data"
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"data": {
|
792 |
+
"application/vnd.jupyter.widget-view+json": {
|
793 |
+
"model_id": "79956a438155481080f30b669d7aae7b",
|
794 |
+
"version_major": 2,
|
795 |
+
"version_minor": 0
|
796 |
+
},
|
797 |
+
"text/plain": [
|
798 |
+
"model-00019-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
799 |
+
]
|
800 |
+
},
|
801 |
+
"metadata": {},
|
802 |
+
"output_type": "display_data"
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"data": {
|
806 |
+
"application/vnd.jupyter.widget-view+json": {
|
807 |
+
"model_id": "cc538ae927d2423d8bdf28c437522018",
|
808 |
+
"version_major": 2,
|
809 |
+
"version_minor": 0
|
810 |
+
},
|
811 |
+
"text/plain": [
|
812 |
+
"model-00020-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
813 |
+
]
|
814 |
+
},
|
815 |
+
"metadata": {},
|
816 |
+
"output_type": "display_data"
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"data": {
|
820 |
+
"application/vnd.jupyter.widget-view+json": {
|
821 |
+
"model_id": "01d605b47f224b81a1d78c46bc512440",
|
822 |
+
"version_major": 2,
|
823 |
+
"version_minor": 0
|
824 |
+
},
|
825 |
+
"text/plain": [
|
826 |
+
"model-00021-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
827 |
+
]
|
828 |
+
},
|
829 |
+
"metadata": {},
|
830 |
+
"output_type": "display_data"
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"data": {
|
834 |
+
"application/vnd.jupyter.widget-view+json": {
|
835 |
+
"model_id": "e3a40b4984db442b863fb24b9510364b",
|
836 |
+
"version_major": 2,
|
837 |
+
"version_minor": 0
|
838 |
+
},
|
839 |
+
"text/plain": [
|
840 |
+
"model-00022-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
841 |
+
]
|
842 |
+
},
|
843 |
+
"metadata": {},
|
844 |
+
"output_type": "display_data"
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"data": {
|
848 |
+
"application/vnd.jupyter.widget-view+json": {
|
849 |
+
"model_id": "ccdb98bdf695414b832cd7e7c28c042f",
|
850 |
+
"version_major": 2,
|
851 |
+
"version_minor": 0
|
852 |
+
},
|
853 |
+
"text/plain": [
|
854 |
+
"model-00023-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
855 |
+
]
|
856 |
+
},
|
857 |
+
"metadata": {},
|
858 |
+
"output_type": "display_data"
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"data": {
|
862 |
+
"application/vnd.jupyter.widget-view+json": {
|
863 |
+
"model_id": "3480c970522041caa1de260c97f3a5aa",
|
864 |
+
"version_major": 2,
|
865 |
+
"version_minor": 0
|
866 |
+
},
|
867 |
+
"text/plain": [
|
868 |
+
"model-00024-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
869 |
+
]
|
870 |
+
},
|
871 |
+
"metadata": {},
|
872 |
+
"output_type": "display_data"
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"data": {
|
876 |
+
"application/vnd.jupyter.widget-view+json": {
|
877 |
+
"model_id": "135cdeaff5be480ca496d0562acf83cd",
|
878 |
+
"version_major": 2,
|
879 |
+
"version_minor": 0
|
880 |
+
},
|
881 |
+
"text/plain": [
|
882 |
+
"model-00025-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
883 |
+
]
|
884 |
+
},
|
885 |
+
"metadata": {},
|
886 |
+
"output_type": "display_data"
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"data": {
|
890 |
+
"application/vnd.jupyter.widget-view+json": {
|
891 |
+
"model_id": "d0b44e898f064aa7b43ea8b4d36e97ad",
|
892 |
+
"version_major": 2,
|
893 |
+
"version_minor": 0
|
894 |
+
},
|
895 |
+
"text/plain": [
|
896 |
+
"model-00026-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
897 |
+
]
|
898 |
+
},
|
899 |
+
"metadata": {},
|
900 |
+
"output_type": "display_data"
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"data": {
|
904 |
+
"application/vnd.jupyter.widget-view+json": {
|
905 |
+
"model_id": "1aa50a58715943caa10db97b0ee5981f",
|
906 |
+
"version_major": 2,
|
907 |
+
"version_minor": 0
|
908 |
+
},
|
909 |
+
"text/plain": [
|
910 |
+
"model-00027-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
911 |
+
]
|
912 |
+
},
|
913 |
+
"metadata": {},
|
914 |
+
"output_type": "display_data"
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"data": {
|
918 |
+
"application/vnd.jupyter.widget-view+json": {
|
919 |
+
"model_id": "e9de0a30c1534f499465e270e157e9de",
|
920 |
+
"version_major": 2,
|
921 |
+
"version_minor": 0
|
922 |
+
},
|
923 |
+
"text/plain": [
|
924 |
+
"model-00028-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
925 |
+
]
|
926 |
+
},
|
927 |
+
"metadata": {},
|
928 |
+
"output_type": "display_data"
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"data": {
|
932 |
+
"application/vnd.jupyter.widget-view+json": {
|
933 |
+
"model_id": "445f10e616fd49e1a4868c88fb31c56f",
|
934 |
+
"version_major": 2,
|
935 |
+
"version_minor": 0
|
936 |
+
},
|
937 |
+
"text/plain": [
|
938 |
+
"model-00029-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
939 |
+
]
|
940 |
+
},
|
941 |
+
"metadata": {},
|
942 |
+
"output_type": "display_data"
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"data": {
|
946 |
+
"application/vnd.jupyter.widget-view+json": {
|
947 |
+
"model_id": "292d0fbfbf8c4145b3a208480eeb6121",
|
948 |
+
"version_major": 2,
|
949 |
+
"version_minor": 0
|
950 |
+
},
|
951 |
+
"text/plain": [
|
952 |
+
"model-00030-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
953 |
+
]
|
954 |
+
},
|
955 |
+
"metadata": {},
|
956 |
+
"output_type": "display_data"
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"data": {
|
960 |
+
"application/vnd.jupyter.widget-view+json": {
|
961 |
+
"model_id": "43893486f5dc40f290811b94d4c1352d",
|
962 |
+
"version_major": 2,
|
963 |
+
"version_minor": 0
|
964 |
+
},
|
965 |
+
"text/plain": [
|
966 |
+
"model-00031-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
967 |
+
]
|
968 |
+
},
|
969 |
+
"metadata": {},
|
970 |
+
"output_type": "display_data"
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"data": {
|
974 |
+
"application/vnd.jupyter.widget-view+json": {
|
975 |
+
"model_id": "7291f54de4874b9ebbd2c215a1b5c5ed",
|
976 |
+
"version_major": 2,
|
977 |
+
"version_minor": 0
|
978 |
+
},
|
979 |
+
"text/plain": [
|
980 |
+
"model-00032-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
981 |
+
]
|
982 |
+
},
|
983 |
+
"metadata": {},
|
984 |
+
"output_type": "display_data"
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"data": {
|
988 |
+
"application/vnd.jupyter.widget-view+json": {
|
989 |
+
"model_id": "461b39ab50e746a1bd34e8f641d75f15",
|
990 |
+
"version_major": 2,
|
991 |
+
"version_minor": 0
|
992 |
+
},
|
993 |
+
"text/plain": [
|
994 |
+
"model-00033-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
995 |
+
]
|
996 |
+
},
|
997 |
+
"metadata": {},
|
998 |
+
"output_type": "display_data"
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"data": {
|
1002 |
+
"application/vnd.jupyter.widget-view+json": {
|
1003 |
+
"model_id": "e98726876f774a92a5a4d5b3bc2b381a",
|
1004 |
+
"version_major": 2,
|
1005 |
+
"version_minor": 0
|
1006 |
+
},
|
1007 |
+
"text/plain": [
|
1008 |
+
"model-00034-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
1009 |
+
]
|
1010 |
+
},
|
1011 |
+
"metadata": {},
|
1012 |
+
"output_type": "display_data"
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"data": {
|
1016 |
+
"application/vnd.jupyter.widget-view+json": {
|
1017 |
+
"model_id": "d669bf2bd9d04dc881d16f5eb955f599",
|
1018 |
+
"version_major": 2,
|
1019 |
+
"version_minor": 0
|
1020 |
+
},
|
1021 |
+
"text/plain": [
|
1022 |
+
"model-00035-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
1023 |
+
]
|
1024 |
+
},
|
1025 |
+
"metadata": {},
|
1026 |
+
"output_type": "display_data"
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"data": {
|
1030 |
+
"application/vnd.jupyter.widget-view+json": {
|
1031 |
+
"model_id": "1443fa509c8b4c2a8acaeb0c7bbc3f84",
|
1032 |
+
"version_major": 2,
|
1033 |
+
"version_minor": 0
|
1034 |
+
},
|
1035 |
+
"text/plain": [
|
1036 |
+
"model-00036-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
1037 |
+
]
|
1038 |
+
},
|
1039 |
+
"metadata": {},
|
1040 |
+
"output_type": "display_data"
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"data": {
|
1044 |
+
"application/vnd.jupyter.widget-view+json": {
|
1045 |
+
"model_id": "9f388beeb6f245568782cf29d8a7b831",
|
1046 |
+
"version_major": 2,
|
1047 |
+
"version_minor": 0
|
1048 |
+
},
|
1049 |
+
"text/plain": [
|
1050 |
+
"model-00037-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
1051 |
+
]
|
1052 |
+
},
|
1053 |
+
"metadata": {},
|
1054 |
+
"output_type": "display_data"
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"data": {
|
1058 |
+
"application/vnd.jupyter.widget-view+json": {
|
1059 |
+
"model_id": "c6a2ce5c1e564152802f56ec6e4e8a75",
|
1060 |
+
"version_major": 2,
|
1061 |
+
"version_minor": 0
|
1062 |
+
},
|
1063 |
+
"text/plain": [
|
1064 |
+
"model-00038-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
1065 |
+
]
|
1066 |
+
},
|
1067 |
+
"metadata": {},
|
1068 |
+
"output_type": "display_data"
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"data": {
|
1072 |
+
"application/vnd.jupyter.widget-view+json": {
|
1073 |
+
"model_id": "2335b6093c9f49eeba58349209fbc38d",
|
1074 |
+
"version_major": 2,
|
1075 |
+
"version_minor": 0
|
1076 |
+
},
|
1077 |
+
"text/plain": [
|
1078 |
+
"model-00039-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
1079 |
+
]
|
1080 |
+
},
|
1081 |
+
"metadata": {},
|
1082 |
+
"output_type": "display_data"
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"data": {
|
1086 |
+
"application/vnd.jupyter.widget-view+json": {
|
1087 |
+
"model_id": "a7b3687060db425ab597c8e103deed46",
|
1088 |
+
"version_major": 2,
|
1089 |
+
"version_minor": 0
|
1090 |
+
},
|
1091 |
+
"text/plain": [
|
1092 |
+
"model-00040-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
1093 |
+
]
|
1094 |
+
},
|
1095 |
+
"metadata": {},
|
1096 |
+
"output_type": "display_data"
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"data": {
|
1100 |
+
"application/vnd.jupyter.widget-view+json": {
|
1101 |
+
"model_id": "2b561cea2d324c40975c1eb9ea30cc5d",
|
1102 |
+
"version_major": 2,
|
1103 |
+
"version_minor": 0
|
1104 |
+
},
|
1105 |
+
"text/plain": [
|
1106 |
+
"model-00041-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
1107 |
+
]
|
1108 |
+
},
|
1109 |
+
"metadata": {},
|
1110 |
+
"output_type": "display_data"
|
1111 |
+
},
|
1112 |
+
{
|
1113 |
+
"data": {
|
1114 |
+
"application/vnd.jupyter.widget-view+json": {
|
1115 |
+
"model_id": "b287241358cf48a497101402d0bd693f",
|
1116 |
+
"version_major": 2,
|
1117 |
+
"version_minor": 0
|
1118 |
+
},
|
1119 |
+
"text/plain": [
|
1120 |
+
"model-00042-of-00044.safetensors: 0%| | 0.00/4.97G [00:00<?, ?B/s]"
|
1121 |
+
]
|
1122 |
+
},
|
1123 |
+
"metadata": {},
|
1124 |
+
"output_type": "display_data"
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"data": {
|
1128 |
+
"application/vnd.jupyter.widget-view+json": {
|
1129 |
+
"model_id": "cc93269313fc4f7f9d7d1a301373a2f8",
|
1130 |
+
"version_major": 2,
|
1131 |
+
"version_minor": 0
|
1132 |
+
},
|
1133 |
+
"text/plain": [
|
1134 |
+
"model-00043-of-00044.safetensors: 0%| | 0.00/4.22G [00:00<?, ?B/s]"
|
1135 |
+
]
|
1136 |
+
},
|
1137 |
+
"metadata": {},
|
1138 |
+
"output_type": "display_data"
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"data": {
|
1142 |
+
"application/vnd.jupyter.widget-view+json": {
|
1143 |
+
"model_id": "7fd37422efe449fbb6ac31fd869cee15",
|
1144 |
+
"version_major": 2,
|
1145 |
+
"version_minor": 0
|
1146 |
+
},
|
1147 |
+
"text/plain": [
|
1148 |
+
"model-00044-of-00044.safetensors: 0%| | 0.00/4.20G [00:00<?, ?B/s]"
|
1149 |
+
]
|
1150 |
+
},
|
1151 |
+
"metadata": {},
|
1152 |
+
"output_type": "display_data"
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"data": {
|
1156 |
+
"application/vnd.jupyter.widget-view+json": {
|
1157 |
+
"model_id": "a664a2e9587343f99883157151ba080f",
|
1158 |
+
"version_major": 2,
|
1159 |
+
"version_minor": 0
|
1160 |
+
},
|
1161 |
+
"text/plain": [
|
1162 |
+
"model.safetensors.index.json: 0%| | 0.00/239k [00:00<?, ?B/s]"
|
1163 |
+
]
|
1164 |
+
},
|
1165 |
+
"metadata": {},
|
1166 |
+
"output_type": "display_data"
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"data": {
|
1170 |
+
"application/vnd.jupyter.widget-view+json": {
|
1171 |
+
"model_id": "8e2b847d11014313807e518426b573a4",
|
1172 |
+
"version_major": 2,
|
1173 |
+
"version_minor": 0
|
1174 |
+
},
|
1175 |
+
"text/plain": [
|
1176 |
+
"Loading safetensors checkpoint shards: 0% Completed | 0/44 [00:00<?, ?it/s]\n"
|
1177 |
+
]
|
1178 |
+
},
|
1179 |
+
"metadata": {},
|
1180 |
+
"output_type": "display_data"
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"name": "stdout",
|
1184 |
+
"output_type": "stream",
|
1185 |
+
"text": [
|
1186 |
+
"INFO 12-08 01:52:50 model_runner.py:1077] Loading model weights took 50.6331 GB\n",
|
1187 |
+
"\u001b[1;36m(VllmWorkerProcess pid=730)\u001b[0;0m INFO 12-08 01:52:52 model_runner.py:1077] Loading model weights took 50.6331 GB\n",
|
1188 |
+
"\u001b[1;36m(VllmWorkerProcess pid=729)\u001b[0;0m INFO 12-08 01:52:52 model_runner.py:1077] Loading model weights took 50.6331 GB\n",
|
1189 |
+
"\u001b[1;36m(VllmWorkerProcess pid=731)\u001b[0;0m INFO 12-08 01:52:52 model_runner.py:1077] Loading model weights took 50.6331 GB\n",
|
1190 |
+
"\u001b[1;36m(VllmWorkerProcess pid=730)\u001b[0;0m \u001b[1;36m(VllmWorkerProcess pid=729)\u001b[0;0m \u001b[1;36m(VllmWorkerProcess pid=731)\u001b[0;0m INFO 12-08 01:52:54 worker.py:232] Memory profiling results: total_gpu_memory=93.11GiB initial_memory_usage=51.58GiB peak_torch_memory=51.55GiB memory_usage_post_profile=51.82GiB non_torch_memory=1.15GiB kv_cache_size=37.61GiB gpu_memory_utilization=0.97\n",
|
1191 |
+
"INFO 12-08 01:52:54 worker.py:232] Memory profiling results: total_gpu_memory=93.11GiB initial_memory_usage=51.51GiB peak_torch_memory=51.55GiB memory_usage_post_profile=51.68GiB non_torch_memory=1.01GiB kv_cache_size=37.75GiB gpu_memory_utilization=0.97\n",
|
1192 |
+
"INFO 12-08 01:52:54 worker.py:232] Memory profiling results: total_gpu_memory=93.11GiB initial_memory_usage=51.58GiB peak_torch_memory=51.55GiB memory_usage_post_profile=51.82GiB non_torch_memory=1.15GiB kv_cache_size=37.61GiB gpu_memory_utilization=0.97\n",
|
1193 |
+
"INFO 12-08 01:52:54 worker.py:232] Memory profiling results: total_gpu_memory=93.11GiB initial_memory_usage=51.51GiB peak_torch_memory=51.84GiB memory_usage_post_profile=51.68GiB non_torch_memory=1.02GiB kv_cache_size=37.46GiB gpu_memory_utilization=0.97\n",
|
1194 |
+
"INFO 12-08 01:52:54 distributed_gpu_executor.py:57] # GPU blocks: 19483, # CPU blocks: 2080\n",
|
1195 |
+
"INFO 12-08 01:52:54 distributed_gpu_executor.py:61] Maximum concurrency for 131072 tokens per request: 2.38x\n",
|
1196 |
+
"\u001b[1;36m(VllmWorkerProcess pid=730)\u001b[0;0m INFO 12-08 01:52:59 model_runner.py:1400] Capturing cudagraphs for decoding. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.\n",
|
1197 |
+
"\u001b[1;36m(VllmWorkerProcess pid=730)\u001b[0;0m INFO 12-08 01:52:59 model_runner.py:1404] If out-of-memory error occurs during cudagraph capture, consider decreasing `gpu_memory_utilization` or switching to eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.\n",
|
1198 |
+
"INFO 12-08 01:52:59 model_runner.py:1400] Capturing cudagraphs for decoding. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.\n",
|
1199 |
+
"INFO 12-08 01:52:59 model_runner.py:1404] If out-of-memory error occurs during cudagraph capture, consider decreasing `gpu_memory_utilization` or switching to eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.\n",
|
1200 |
+
"\u001b[1;36m(VllmWorkerProcess pid=731)\u001b[0;0m INFO 12-08 01:53:00 model_runner.py:1400] Capturing cudagraphs for decoding. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.\n",
|
1201 |
+
"\u001b[1;36m(VllmWorkerProcess pid=731)\u001b[0;0m INFO 12-08 01:53:00 model_runner.py:1404] If out-of-memory error occurs during cudagraph capture, consider decreasing `gpu_memory_utilization` or switching to eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.\n",
|
1202 |
+
"\u001b[1;36m(VllmWorkerProcess pid=729)\u001b[0;0m INFO 12-08 01:53:00 model_runner.py:1400] Capturing cudagraphs for decoding. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.\n",
|
1203 |
+
"\u001b[1;36m(VllmWorkerProcess pid=729)\u001b[0;0m INFO 12-08 01:53:00 model_runner.py:1404] If out-of-memory error occurs during cudagraph capture, consider decreasing `gpu_memory_utilization` or switching to eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.\n",
|
1204 |
+
"\u001b[1;36m(VllmWorkerProcess pid=731)\u001b[0;0m INFO 12-08 01:53:44 model_runner.py:1518] Graph capturing finished in 45 secs, took 2.71 GiB\n",
|
1205 |
+
"INFO 12-08 01:53:45 model_runner.py:1518] Graph capturing finished in 46 secs, took 2.71 GiB\n",
|
1206 |
+
"\u001b[1;36m(VllmWorkerProcess pid=729)\u001b[0;0m INFO 12-08 01:53:45 model_runner.py:1518] Graph capturing finished in 45 secs, took 2.71 GiB\n",
|
1207 |
+
"\u001b[1;36m(VllmWorkerProcess pid=730)\u001b[0;0m INFO 12-08 01:53:45 model_runner.py:1518] Graph capturing finished in 46 secs, took 2.71 GiB\n"
|
1208 |
+
]
|
1209 |
+
}
|
1210 |
+
],
|
1211 |
+
"source": [
|
1212 |
+
"llm = LLM(\n",
|
1213 |
+
" model=\"kishizaki-sci/Llama-3.1-405B-Instruct-AWQ-4bit-JP-EN\",\n",
|
1214 |
+
" tensor_parallel_size=4,\n",
|
1215 |
+
" gpu_memory_utilization=0.97,\n",
|
1216 |
+
" quantization=\"awq\"\n",
|
1217 |
+
")\n",
|
1218 |
+
"tokenizer = llm.get_tokenizer()"
|
1219 |
+
]
|
1220 |
+
},
|
1221 |
+
{
|
1222 |
+
"cell_type": "code",
|
1223 |
+
"execution_count": 4,
|
1224 |
+
"id": "cc81f387-a06f-4564-a50e-37e367a79422",
|
1225 |
+
"metadata": {},
|
1226 |
+
"outputs": [],
|
1227 |
+
"source": [
|
1228 |
+
"DEFAULT_SYSTEM_PROMPT = \"あなたは日本人のアシスタントです。\"\n",
|
1229 |
+
"text = \"plotly.graph_objectsを使って散布図を作るサンプルコードを書いてください.\"\n",
|
1230 |
+
"\n",
|
1231 |
+
"messages = [\n",
|
1232 |
+
" {\"role\": \"system\", \"content\": DEFAULT_SYSTEM_PROMPT},\n",
|
1233 |
+
" {\"role\": \"user\", \"content\": text},\n",
|
1234 |
+
"]\n",
|
1235 |
+
"\n",
|
1236 |
+
"prompt = tokenizer.apply_chat_template(\n",
|
1237 |
+
" messages,\n",
|
1238 |
+
" tokenize=False,\n",
|
1239 |
+
" add_generation_prompt=True\n",
|
1240 |
+
")\n",
|
1241 |
+
"\n",
|
1242 |
+
"sampling_params = SamplingParams(\n",
|
1243 |
+
" temperature=0.6,\n",
|
1244 |
+
" top_p=0.9,\n",
|
1245 |
+
" max_tokens=1000\n",
|
1246 |
+
")"
|
1247 |
+
]
|
1248 |
+
},
|
1249 |
+
{
|
1250 |
+
"cell_type": "code",
|
1251 |
+
"execution_count": 5,
|
1252 |
+
"id": "c74b2d83-12ff-4324-bc84-51e88b3e12b3",
|
1253 |
+
"metadata": {},
|
1254 |
+
"outputs": [
|
1255 |
+
{
|
1256 |
+
"name": "stderr",
|
1257 |
+
"output_type": "stream",
|
1258 |
+
"text": [
|
1259 |
+
"Processed prompts: 100%|██████████| 1/1 [00:20<00:00, 20.38s/it, est. speed input: 3.29 toks/s, output: 13.59 toks/s]"
|
1260 |
+
]
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"name": "stdout",
|
1264 |
+
"output_type": "stream",
|
1265 |
+
"text": [
|
1266 |
+
"plotly.graph_objectsを使って散布図を作るサンプルコードを以下に示します。\n",
|
1267 |
+
"\n",
|
1268 |
+
"```python\n",
|
1269 |
+
"import plotly.graph_objects as go\n",
|
1270 |
+
"import numpy as np\n",
|
1271 |
+
"\n",
|
1272 |
+
"# サンプルデータを生成\n",
|
1273 |
+
"np.random.seed(0)\n",
|
1274 |
+
"x = np.random.randn(100)\n",
|
1275 |
+
"y = np.random.randn(100)\n",
|
1276 |
+
"\n",
|
1277 |
+
"# 散布図を作成\n",
|
1278 |
+
"fig = go.Figure(data=[go.Scatter(\n",
|
1279 |
+
" x=x,\n",
|
1280 |
+
" y=y,\n",
|
1281 |
+
" mode='markers',\n",
|
1282 |
+
" marker=dict(\n",
|
1283 |
+
" size=10,\n",
|
1284 |
+
" color='blue',\n",
|
1285 |
+
" opacity=0.7\n",
|
1286 |
+
" )\n",
|
1287 |
+
")])\n",
|
1288 |
+
"\n",
|
1289 |
+
"# グラフのタイトルと軸ラベルを設定\n",
|
1290 |
+
"fig.update_layout(\n",
|
1291 |
+
" title='散布図のサンプル',\n",
|
1292 |
+
" xaxis_title='X軸',\n",
|
1293 |
+
" yaxis_title='Y軸'\n",
|
1294 |
+
")\n",
|
1295 |
+
"\n",
|
1296 |
+
"# グラフを表示\n",
|
1297 |
+
"fig.show()\n",
|
1298 |
+
"```\n",
|
1299 |
+
"\n",
|
1300 |
+
"このコードでは、numpyを使用してランダムなサンプルデータを生成し、plotly.graph_objectsのScatterオブジェクトを使用して散布図を作成しています。散布図のマーカーのサイズ、色、透明度を設定し、���ラフのタイトルと軸ラベルを設定しています。最後に、`fig.show()`を使用してグラフを表示しています。\n",
|
1301 |
+
"CPU times: user 19.8 s, sys: 645 ms, total: 20.5 s\n",
|
1302 |
+
"Wall time: 20.4 s\n"
|
1303 |
+
]
|
1304 |
+
},
|
1305 |
+
{
|
1306 |
+
"name": "stderr",
|
1307 |
+
"output_type": "stream",
|
1308 |
+
"text": [
|
1309 |
+
"\n"
|
1310 |
+
]
|
1311 |
+
}
|
1312 |
+
],
|
1313 |
+
"source": [
|
1314 |
+
"%%time\n",
|
1315 |
+
"outputs = llm.generate(prompt, sampling_params)\n",
|
1316 |
+
"print(outputs[0].outputs[0].text)"
|
1317 |
+
]
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"cell_type": "code",
|
1321 |
+
"execution_count": null,
|
1322 |
+
"id": "1fb4a3d0-10ba-4eda-824d-e774322ddf07",
|
1323 |
+
"metadata": {},
|
1324 |
+
"outputs": [],
|
1325 |
+
"source": []
|
1326 |
+
}
|
1327 |
+
],
|
1328 |
+
"metadata": {
|
1329 |
+
"kernelspec": {
|
1330 |
+
"display_name": "Python 3 (ipykernel)",
|
1331 |
+
"language": "python",
|
1332 |
+
"name": "python3"
|
1333 |
+
},
|
1334 |
+
"language_info": {
|
1335 |
+
"codemirror_mode": {
|
1336 |
+
"name": "ipython",
|
1337 |
+
"version": 3
|
1338 |
+
},
|
1339 |
+
"file_extension": ".py",
|
1340 |
+
"mimetype": "text/x-python",
|
1341 |
+
"name": "python",
|
1342 |
+
"nbconvert_exporter": "python",
|
1343 |
+
"pygments_lexer": "ipython3",
|
1344 |
+
"version": "3.11.10"
|
1345 |
+
}
|
1346 |
+
},
|
1347 |
+
"nbformat": 4,
|
1348 |
+
"nbformat_minor": 5
|
1349 |
+
}
|