Edit model card

Wave2Vec2-Bert2.0 - Kiran Pantha

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the OpenSLR54 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2212
  • Wer: 0.2525
  • Cer: 0.0565

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.4436 0.0900 300 0.5638 0.5560 0.1447
0.5495 0.1800 600 0.6876 0.6171 0.1641
0.6148 0.2699 900 0.6872 0.6211 0.1724
0.564 0.3599 1200 0.5503 0.5162 0.1326
0.4964 0.4499 1500 0.5831 0.5319 0.1318
0.4437 0.5399 1800 0.4913 0.4935 0.1202
0.4441 0.6299 2100 0.4754 0.4764 0.1193
0.3861 0.7199 2400 0.4357 0.4361 0.1055
0.3811 0.8098 2700 0.4282 0.4137 0.0976
0.3754 0.8998 3000 0.3905 0.4069 0.0975
0.3511 0.9898 3300 0.3547 0.3692 0.0863
0.2496 1.0798 3600 0.3297 0.3433 0.0796
0.242 1.1698 3900 0.3125 0.3315 0.0770
0.2378 1.2597 4200 0.3158 0.3336 0.0757
0.2274 1.3497 4500 0.2871 0.3097 0.0722
0.2142 1.4397 4800 0.3010 0.3058 0.0712
0.1949 1.5297 5100 0.2767 0.2944 0.0678
0.198 1.6197 5400 0.2487 0.2824 0.0639
0.1806 1.7097 5700 0.2376 0.2674 0.0612
0.1675 1.7996 6000 0.2293 0.2630 0.0595
0.1671 1.8896 6300 0.2248 0.2581 0.0576
0.1526 1.9796 6600 0.2212 0.2525 0.0565

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kiranpantha/w2v-bert-2.0-nepali

Finetuned
(185)
this model
Finetunes
4 models

Evaluation results