Edit model card

sentiment_pc_weightedLoss

This model is a fine-tuned version of ahmedrachid/FinancialBERT-Sentiment-Analysis on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6463
  • Accuracy: 0.86
  • F1: 0.8290

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.1739 50 0.6153 0.8087 0.7818
No log 0.3478 100 0.4938 0.8165 0.7843
No log 0.5217 150 0.4613 0.8339 0.8016
No log 0.6957 200 0.4918 0.7913 0.7619
No log 0.8696 250 0.4520 0.8283 0.7961
No log 1.0435 300 0.4821 0.8339 0.8054
No log 1.2174 350 0.4868 0.8639 0.8327
No log 1.3913 400 0.5093 0.8574 0.8259
No log 1.5652 450 0.4648 0.8474 0.8175
0.4528 1.7391 500 0.4556 0.8470 0.8151
0.4528 1.9130 550 0.4747 0.8361 0.8062
0.4528 2.0870 600 0.5520 0.8543 0.8234
0.4528 2.2609 650 0.6130 0.8652 0.8367
0.4528 2.4348 700 0.5657 0.8722 0.8415
0.4528 2.6087 750 0.5357 0.8339 0.8033
0.4528 2.7826 800 0.5729 0.8513 0.8233
0.4528 2.9565 850 0.5304 0.8522 0.8215
0.4528 3.1304 900 0.5982 0.8683 0.8375
0.4528 3.3043 950 0.5684 0.8513 0.8197
0.1978 3.4783 1000 0.6463 0.86 0.8290
0.1978 3.6522 1050 0.6566 0.8565 0.8262
0.1978 3.8261 1100 0.6497 0.8578 0.8282
0.1978 4.0 1150 0.6531 0.8591 0.8266

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kiatkock/sentiment_pc_weightedLoss

Finetuned
(8)
this model