File size: 4,864 Bytes
0035e5a 7356ed1 0035e5a b7fc2bd 0035e5a 072f8cc 0035e5a 10e1454 0035e5a 7356ed1 b7fc2bd 0035e5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: vit-base-skin
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-skin
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6206
- Accuracy: 0.8705
- F1: 0.8684
- Precision: 0.8850
- Recall: 0.8705
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.8057 | 0.16 | 100 | 0.7591 | 0.7254 | 0.6902 | 0.6779 | 0.7254 |
| 0.7619 | 0.32 | 200 | 0.7081 | 0.7409 | 0.6953 | 0.6920 | 0.7409 |
| 0.6315 | 0.48 | 300 | 0.5954 | 0.8135 | 0.8039 | 0.8688 | 0.8135 |
| 0.8311 | 0.64 | 400 | 0.5974 | 0.7927 | 0.7806 | 0.7985 | 0.7927 |
| 0.5666 | 0.8 | 500 | 0.6151 | 0.7720 | 0.7727 | 0.7903 | 0.7720 |
| 0.5816 | 0.96 | 600 | 0.4912 | 0.8031 | 0.7440 | 0.7008 | 0.8031 |
| 0.3715 | 1.12 | 700 | 0.5772 | 0.7979 | 0.7764 | 0.8024 | 0.7979 |
| 0.5411 | 1.28 | 800 | 0.5024 | 0.8342 | 0.8301 | 0.8447 | 0.8342 |
| 0.474 | 1.44 | 900 | 0.4374 | 0.8342 | 0.8196 | 0.8260 | 0.8342 |
| 0.4386 | 1.6 | 1000 | 0.6611 | 0.7565 | 0.7808 | 0.8456 | 0.7565 |
| 0.4091 | 1.76 | 1100 | 0.5261 | 0.8031 | 0.7855 | 0.8288 | 0.8031 |
| 0.4023 | 1.92 | 1200 | 0.4279 | 0.8446 | 0.8462 | 0.8687 | 0.8446 |
| 0.28 | 2.08 | 1300 | 0.5927 | 0.8238 | 0.8023 | 0.8468 | 0.8238 |
| 0.2408 | 2.24 | 1400 | 0.4605 | 0.8446 | 0.8399 | 0.8503 | 0.8446 |
| 0.2145 | 2.4 | 1500 | 0.4865 | 0.8342 | 0.8399 | 0.8575 | 0.8342 |
| 0.3194 | 2.56 | 1600 | 0.4727 | 0.8497 | 0.8435 | 0.8476 | 0.8497 |
| 0.2391 | 2.72 | 1700 | 0.4676 | 0.8446 | 0.8402 | 0.8423 | 0.8446 |
| 0.1828 | 2.88 | 1800 | 0.4337 | 0.8601 | 0.8625 | 0.8709 | 0.8601 |
| 0.1232 | 3.04 | 1900 | 0.4549 | 0.8601 | 0.8646 | 0.8726 | 0.8601 |
| 0.0929 | 3.19 | 2000 | 0.5939 | 0.8497 | 0.8521 | 0.8606 | 0.8497 |
| 0.0559 | 3.35 | 2100 | 0.5807 | 0.8290 | 0.8237 | 0.8243 | 0.8290 |
| 0.1833 | 3.51 | 2200 | 0.5235 | 0.8601 | 0.8610 | 0.8636 | 0.8601 |
| 0.1395 | 3.67 | 2300 | 0.6750 | 0.8135 | 0.8208 | 0.8466 | 0.8135 |
| 0.0485 | 3.83 | 2400 | 0.4431 | 0.8860 | 0.8856 | 0.8888 | 0.8860 |
| 0.1206 | 3.99 | 2500 | 0.5491 | 0.8394 | 0.8375 | 0.8477 | 0.8394 |
| 0.0485 | 4.15 | 2600 | 0.5289 | 0.8653 | 0.8677 | 0.8744 | 0.8653 |
| 0.0494 | 4.31 | 2700 | 0.5665 | 0.8601 | 0.8603 | 0.8633 | 0.8601 |
| 0.0062 | 4.47 | 2800 | 0.6186 | 0.8497 | 0.8479 | 0.8547 | 0.8497 |
| 0.0065 | 4.63 | 2900 | 0.5823 | 0.8756 | 0.8728 | 0.8737 | 0.8756 |
| 0.0045 | 4.79 | 3000 | 0.5801 | 0.8705 | 0.8699 | 0.8724 | 0.8705 |
| 0.038 | 4.95 | 3100 | 0.6542 | 0.8394 | 0.8405 | 0.8472 | 0.8394 |
| 0.0035 | 5.11 | 3200 | 0.6029 | 0.8653 | 0.8653 | 0.8714 | 0.8653 |
| 0.0031 | 5.27 | 3300 | 0.6385 | 0.8601 | 0.8582 | 0.8653 | 0.8601 |
| 0.0029 | 5.43 | 3400 | 0.6132 | 0.8705 | 0.8676 | 0.8830 | 0.8705 |
| 0.0039 | 5.59 | 3500 | 0.6398 | 0.8653 | 0.8639 | 0.8815 | 0.8653 |
| 0.0034 | 5.75 | 3600 | 0.6221 | 0.8653 | 0.8649 | 0.8726 | 0.8653 |
| 0.003 | 5.91 | 3700 | 0.6206 | 0.8705 | 0.8684 | 0.8850 | 0.8705 |
### Framework versions
- Transformers 4.29.2
- Pytorch 1.13.1
- Datasets 2.14.5
- Tokenizers 0.13.3
|