PWC PWC

Vietnamese Speech Recognition using Wav2vec 2.0

Table of contents

  1. Model Description
  2. Implementation
  3. Benchmark Result
  4. Example Usage
  5. Evaluation
  6. Citation
  7. Contact

Model Description

Fine-tuned the Wav2vec2-based model on about 160 hours of Vietnamese speech dataset from different resources, including VIOS, COMMON VOICE, FOSD and VLSP 100h. We have not yet incorporated the Language Model into our ASR system but still gained a promising result.

Implementation

We also provide code for Pre-training and Fine-tuning the Wav2vec2 model. If you wish to train on your dataset, check it out here:

Benchmark WER Result

VIVOS COMMON VOICE 8.0
without LM 15.05 10.78
with LM in progress in progress

Example Usage Open In Colab

from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import librosa
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

processor = Wav2Vec2Processor.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h")
model = Wav2Vec2ForCTC.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h")
model.to(device)

def transcribe(wav):
  input_values = processor(wav, sampling_rate=16000, return_tensors="pt").input_values
  logits = model(input_values.to(device)).logits
  pred_ids = torch.argmax(logits, dim=-1)
  pred_transcript = processor.batch_decode(pred_ids)[0]
  return pred_transcript


wav, _ = librosa.load('path/to/your/audio/file', sr = 16000)
print(f"transcript: {transcribe(wav)}")

Evaluation Open In Colab

from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
import re
from datasets import load_dataset, load_metric, Audio

wer = load_metric("wer")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# load processor and model
processor = Wav2Vec2Processor.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h")
model = Wav2Vec2ForCTC.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h")
model.to(device)
model.eval()

# Load dataset
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "vi", split="test", use_auth_token="your_huggingface_auth_token")
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16000))
chars_to_ignore = r'[,?.!\-;:"“%\'�]' # ignore special characters

# preprocess data
def preprocess(batch):
  audio = batch["audio"]
  batch["input_values"] = audio["array"]
  batch["transcript"] = re.sub(chars_to_ignore, '', batch["sentence"]).lower()
  return batch

# run inference
def inference(batch):
  input_values = processor(batch["input_values"], 
                            sampling_rate=16000, 
                            return_tensors="pt").input_values
  logits = model(input_values.to(device)).logits
  pred_ids = torch.argmax(logits, dim=-1)
  batch["pred_transcript"] = processor.batch_decode(pred_ids) 
  return batch
  
test_dataset = test_dataset.map(preprocess)
result = test_dataset.map(inference, batched=True, batch_size=1)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_transcript"], references=result["transcript"])))

Test Result: 10.78%

Citation

DOI BibTeX

@mics{Duy_Khanh_Finetune_Wav2vec_2_0_2022,
  author = {Duy Khanh, Le},
  doi = {10.5281/zenodo.6542357},
  license = {CC-BY-NC-4.0},
  month = {5},
  title = {{Finetune Wav2vec 2.0 For Vietnamese Speech Recognition}},
  url = {https://github.com/khanld/ASR-Wa2vec-Finetune},
  year = {2022}
}

APA

Duy Khanh, L. (2022). Finetune Wav2vec 2.0 For Vietnamese Speech Recognition [Data set]. https://doi.org/10.5281/zenodo.6542357

Contact

Downloads last month
79
Hosted inference API
or or
This model can be loaded on the Inference API on-demand.

Datasets used to train khanhld/wav2vec2-base-vietnamese-160h

Evaluation results