File size: 3,109 Bytes
6e5a8e8
c81829d
6e5a8e8
 
c81829d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e5a8e8
 
 
c81829d
6e5a8e8
c81829d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch
import os
from transformers import AutoModelForCausalLM, AutoTokenizer

class ModelHandler:
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.model = None
        self.tokenizer = None
        self.initialized = False

    def initialize(self):
        """Initialize the model and tokenizer"""
        if self.initialized:
            return

        try:
            # Load model and tokenizer from the local path
            model_path = os.path.dirname(os.path.abspath(__file__))
            self.model = AutoModelForCausalLM.from_pretrained(
                model_path,
                device_map="auto",
                torch_dtype=torch.float16  # Use float16 for T4 GPU optimization
            )
            self.tokenizer = AutoTokenizer.from_pretrained(model_path)
            self.initialized = True
        except Exception as e:
            raise RuntimeError(f"Error initializing model: {str(e)}")

    def predict(self, input_data):
        """
        Process the input data and generate an answer from the model.
        Args:
            input_data (dict): The input question.
        Returns:
            dict: The model's generated answer.
        """
        if not self.initialized:
            self.initialize()

        try:
            # Extract the question from input_data
            question = input_data.get('question', '')
            if not question:
                return {"error": "No question provided."}

            # Define the prompt with the user's question
            alpaca_prompt = f"""
            السؤال: {question}
            الإجابة:
            """
            formatted_prompt = alpaca_prompt.strip()

            # Tokenize the input
            inputs = self.tokenizer([formatted_prompt], return_tensors="pt")
            inputs = {k: v.to(self.device) for k, v in inputs.items()}

            # Generate with proper error handling and memory management
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=128,
                    temperature=0.7,
                    top_k=50,
                    top_p=0.95,
                    use_cache=True,
                    pad_token_id=self.tokenizer.eos_token_id
                )

            # Decode the output
            decoded_output = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
            
            # Clean up the output
            clean_output = decoded_output[0].replace("السؤال:", "").replace("الإجابة:", "").strip()
            
            # Clear CUDA cache if using GPU
            if self.device == "cuda":
                torch.cuda.empty_cache()

            return {"answer": clean_output}

        except Exception as e:
            return {"error": f"Prediction error: {str(e)}"}

# Create a global handler instance
handler = ModelHandler()

def predict(input_data):
    """
    Wrapper function for the handler's predict method
    """
    return handler.predict(input_data)