RoBERTa-large-Detection-P2G

์ด ๋ชจ๋ธ์€ klue/roberta-large์„ ๊ตญ๋ฆฝ ๊ตญ์–ด์› ์‹ ๋ฌธ ๋ง๋ญ‰์น˜ 5๋งŒ๊ฐœ์˜ ๋ฌธ์žฅ์„ 2021์„ g2pK๋กœ ํ›ˆ๋ จ์‹œ์ผœ G2P๋œ ๋ฐ์ดํ„ฐ๋ฅผ ํƒ์ง€ํ•ฉ๋‹ˆ๋‹ค.
git : https://github.com/taemin6697

Usage

from transformers import AutoTokenizer, RobertaForSequenceClassification
import torch
import numpy as np

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_dir = "kfkas/RoBERTa-large-Detection-G2P"
tokenizer = AutoTokenizer.from_pretrained('klue/roberta-large')
model = RobertaForSequenceClassification.from_pretrained(model_dir).to(device)

text = "์›”๋“œ์ปค ํŒŒ๋‚˜์€ํ–‰ ๋Œ€ํ‘œํ‹ฐ๋ฉ” ํ–‰์šฐ๋Šฌ ์ด๋‹ฌ๋Ÿฌ ์ด์˜์˜์žฅ ์„ ๋ฌผ"
with torch.no_grad():
    x = tokenizer(text, padding='max_length', truncation=True, return_tensors='pt', max_length=128)
    y_pred = model(x["input_ids"].to(device))
    logits = y_pred.logits
    y_pred = logits.detach().cpu().numpy()
    y = np.argmax(y_pred)
    print(y)
    #1

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: None
  • training_precision: float16

Training results

Framework versions

  • Transformers 4.22.1
  • TensorFlow 2.10.0
  • Datasets 2.5.1
  • Tokenizers 0.12.1
Downloads last month
5
Safetensors
Model size
337M params
Tensor type
I64
ยท
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including kfkas/RoBERTa-large-Detection-G2P