Model Overview

A LoRA (Low-Rank Adaptation) fine-tuned adapter for the Llama-3.1-8B language model.

Model Details

  • Base Model: meta-llama/Llama-3.1-8B-instruct
  • Adaptation Method: LoRA

Training Configuration

Training Hyperparameters

  • Learning Rate: 25e-6
  • Batch Size: 2
  • Number of Epochs: 1
  • Training Steps: ~9,000
  • Precision: "BF16"

LoRA Configuration

  • Rank (r): 16
  • Alpha: 16
  • Target Modules:
    • q_proj (Query projection)
    • k_proj (Key projection)
    • v_proj (Value projection)
    • o_proj (Output projection)
    • up_proj (Upsampling projection)
    • down_proj (Downsampling projection)
    • gate_proj (Gate projection)

Usage

This adapter must be used in conjunction with the base Llama-3.1-8B model.

Loading the Model

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load base model
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-instruct")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-instruct")

# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "path_to_adapter")

Limitations and Biases

  • This adapter might inherits some limitations and biases present in the base Llama-3.1-8B-instruct model
  • The training dataset size (~1k steps) is relatively small, which may limit the adapter's effectiveness
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.