This view is limited to 50 files because it contains too many changes.  See the raw diff here.
Files changed (50) hide show
  1. README.md +2 -8
  2. activation/activation_kernels.cu +204 -0
  3. activation/cuda_compat.h +49 -0
  4. activation/dispatch_utils.h +35 -0
  5. build.toml +17 -0
  6. build/{torch28-cxx11-cu126-aarch64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/__init__.py +9 -19
  7. build/{torch27-cxx11-cu118-x86_64-linux/activation/_activation_beeaae6.abi3.so → torch25-cxx11-cu118-x86_64-linux/activation/_activation_o63kkyjirmkf4.abi3.so} +2 -2
  8. build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/_ops.py +3 -3
  9. build/{torch28-cxx11-cu128-aarch64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/__init__.py +9 -19
  10. build/{torch27-cxx11-cu126-x86_64-linux/activation/_activation_beeaae6.abi3.so → torch25-cxx11-cu121-x86_64-linux/activation/_activation_vrl36m2ejer54.abi3.so} +2 -2
  11. build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/_ops.py +3 -3
  12. build/{torch27-cxx11-cu128-aarch64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/__init__.py +9 -37
  13. build/{torch27-cxx11-cu128-aarch64-linux/activation/_activation_320b408.abi3.so → torch25-cxx11-cu124-x86_64-linux/activation/_activation_va3moa75vw7c2.abi3.so} +2 -2
  14. build/{torch27-cxx11-cu128-aarch64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/_ops.py +3 -3
  15. build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx98-cu118-x86_64-linux}/activation/__init__.py +9 -37
  16. build/{torch27-cxx11-cu128-x86_64-linux/activation/_activation_beeaae6.abi3.so → torch25-cxx98-cu118-x86_64-linux/activation/_activation_qr3gs3eckeig4.abi3.so} +2 -2
  17. build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx98-cu118-x86_64-linux}/activation/_ops.py +3 -3
  18. build/torch25-cxx98-cu121-x86_64-linux/activation/__init__.py +47 -0
  19. build/torch25-cxx98-cu121-x86_64-linux/activation/_activation_p7gbzt25w3zg2.abi3.so +3 -0
  20. build/torch25-cxx98-cu121-x86_64-linux/activation/_ops.py +9 -0
  21. build/torch25-cxx98-cu124-x86_64-linux/activation/__init__.py +47 -0
  22. build/torch25-cxx98-cu124-x86_64-linux/activation/_activation_jg7yaigtn7wco.abi3.so +3 -0
  23. build/torch25-cxx98-cu124-x86_64-linux/activation/_ops.py +9 -0
  24. build/torch26-cxx11-cu118-x86_64-linux/activation/__init__.py +47 -0
  25. build/torch26-cxx11-cu118-x86_64-linux/activation/_activation_ncisyrun7guwk.abi3.so +3 -0
  26. build/torch26-cxx11-cu118-x86_64-linux/activation/_ops.py +9 -0
  27. build/torch26-cxx11-cu124-x86_64-linux/activation/__init__.py +47 -0
  28. build/torch26-cxx11-cu124-x86_64-linux/activation/_activation_ochhfvlnc3vyc.abi3.so +3 -0
  29. build/torch26-cxx11-cu124-x86_64-linux/activation/_ops.py +9 -0
  30. build/torch26-cxx11-cu126-x86_64-linux/activation/__init__.py +47 -0
  31. build/torch26-cxx11-cu126-x86_64-linux/activation/_activation_u6vnqubnicksq.abi3.so +3 -0
  32. build/torch26-cxx11-cu126-x86_64-linux/activation/_ops.py +9 -0
  33. build/torch26-cxx98-cu118-x86_64-linux/activation/__init__.py +47 -0
  34. build/torch26-cxx98-cu118-x86_64-linux/activation/_activation_2vn6ty3gfqfb6.abi3.so +3 -0
  35. build/torch26-cxx98-cu118-x86_64-linux/activation/_ops.py +9 -0
  36. build/torch26-cxx98-cu124-x86_64-linux/activation/__init__.py +47 -0
  37. build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_myvteedxdpqc6.abi3.so +3 -0
  38. build/torch26-cxx98-cu124-x86_64-linux/activation/_ops.py +9 -0
  39. build/torch26-cxx98-cu126-x86_64-linux/activation/__init__.py +47 -0
  40. build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_rbswus6emrhm2.abi3.so +3 -0
  41. build/torch26-cxx98-cu126-x86_64-linux/activation/_ops.py +9 -0
  42. build/torch27-cxx11-cu118-x86_64-linux/activation/__init__.py +0 -75
  43. build/torch27-cxx11-cu118-x86_64-linux/activation/__pycache__/__init__.cpython-313.pyc +0 -0
  44. build/torch27-cxx11-cu118-x86_64-linux/activation/__pycache__/_ops.cpython-313.pyc +0 -0
  45. build/torch27-cxx11-cu118-x86_64-linux/activation/__pycache__/layers.cpython-313.pyc +0 -0
  46. build/torch27-cxx11-cu118-x86_64-linux/activation/layers.py +0 -179
  47. build/torch27-cxx11-cu126-x86_64-linux/activation/__init__.py +0 -75
  48. build/torch27-cxx11-cu126-x86_64-linux/activation/__pycache__/__init__.cpython-313.pyc +0 -0
  49. build/torch27-cxx11-cu126-x86_64-linux/activation/__pycache__/_ops.cpython-313.pyc +0 -0
  50. build/torch27-cxx11-cu126-x86_64-linux/activation/__pycache__/layers.cpython-313.pyc +0 -0
README.md CHANGED
@@ -1,13 +1,7 @@
1
  ---
2
  tags:
3
- - kernel
4
  ---
5
-
6
- ![Status](https://hubwebhook.dholtz.com/shield?repo=kernels-community/activation)
7
-
8
  ## Activation
9
 
10
- Activation kernels from [vLLM](https://github.com/vllm-project/vllm/blob/main/csrc/activation_kernels.cu).
11
-
12
- Kernel source: https://github.com/huggingface/kernels-community/tree/main/activation
13
-
 
1
  ---
2
  tags:
3
+ - kernel
4
  ---
 
 
 
5
  ## Activation
6
 
7
+ Activation kernels from [vLLM](https://github.com/vllm-project/vllm/blob/main/csrc/activation_kernels.cu).
 
 
 
activation/activation_kernels.cu ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <ATen/cuda/CUDAContext.h>
2
+ #include <torch/all.h>
3
+ #include <c10/cuda/CUDAGuard.h>
4
+
5
+ #include <cmath>
6
+
7
+ #include "cuda_compat.h"
8
+ #include "dispatch_utils.h"
9
+
10
+ namespace vllm {
11
+
12
+ // Activation and gating kernel template.
13
+ template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
14
+ __global__ void act_and_mul_kernel(
15
+ scalar_t* __restrict__ out, // [..., d]
16
+ const scalar_t* __restrict__ input, // [..., 2, d]
17
+ const int d) {
18
+ const int64_t token_idx = blockIdx.x;
19
+ for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
20
+ const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
21
+ const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
22
+ out[token_idx * d + idx] = ACT_FN(x) * y;
23
+ }
24
+ }
25
+
26
+ template <typename T>
27
+ __device__ __forceinline__ T silu_kernel(const T& x) {
28
+ // x * sigmoid(x)
29
+ return (T)(((float)x) / (1.0f + expf((float)-x)));
30
+ }
31
+
32
+ template <typename T>
33
+ __device__ __forceinline__ T gelu_kernel(const T& x) {
34
+ // Equivalent to PyTorch GELU with 'none' approximation.
35
+ // Refer to:
36
+ // https://github.com/pytorch/pytorch/blob/8ac9b20d4b090c213799e81acf48a55ea8d437d6/aten/src/ATen/native/cuda/ActivationGeluKernel.cu#L36-L38
37
+ const float f = (float)x;
38
+ constexpr float ALPHA = M_SQRT1_2;
39
+ return (T)(f * 0.5f * (1.0f + ::erf(f * ALPHA)));
40
+ }
41
+
42
+ template <typename T>
43
+ __device__ __forceinline__ T gelu_tanh_kernel(const T& x) {
44
+ // Equivalent to PyTorch GELU with 'tanh' approximation.
45
+ // Refer to:
46
+ // https://github.com/pytorch/pytorch/blob/8ac9b20d4b090c213799e81acf48a55ea8d437d6/aten/src/ATen/native/cuda/ActivationGeluKernel.cu#L25-L30
47
+ const float f = (float)x;
48
+ constexpr float BETA = M_SQRT2 * M_2_SQRTPI * 0.5f;
49
+ constexpr float KAPPA = 0.044715;
50
+ float x_cube = f * f * f;
51
+ float inner = BETA * (f + KAPPA * x_cube);
52
+ return (T)(0.5f * f * (1.0f + ::tanhf(inner)));
53
+ }
54
+
55
+ } // namespace vllm
56
+
57
+ // Launch activation and gating kernel.
58
+ #define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL) \
59
+ int d = input.size(-1) / 2; \
60
+ int64_t num_tokens = input.numel() / input.size(-1); \
61
+ dim3 grid(num_tokens); \
62
+ dim3 block(std::min(d, 1024)); \
63
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
64
+ const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
65
+ VLLM_DISPATCH_FLOATING_TYPES( \
66
+ input.scalar_type(), "act_and_mul_kernel", [&] { \
67
+ vllm::act_and_mul_kernel<scalar_t, KERNEL<scalar_t>> \
68
+ <<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
69
+ input.data_ptr<scalar_t>(), d); \
70
+ });
71
+
72
+ void silu_and_mul(torch::Tensor& out, // [..., d]
73
+ torch::Tensor& input) // [..., 2 * d]
74
+ {
75
+ LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel);
76
+ }
77
+
78
+ void gelu_and_mul(torch::Tensor& out, // [..., d]
79
+ torch::Tensor& input) // [..., 2 * d]
80
+ {
81
+ LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_kernel);
82
+ }
83
+
84
+ void gelu_tanh_and_mul(torch::Tensor& out, // [..., d]
85
+ torch::Tensor& input) // [..., 2 * d]
86
+ {
87
+ LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_tanh_kernel);
88
+ }
89
+
90
+ namespace vllm {
91
+
92
+ template <typename T>
93
+ __device__ __forceinline__ T fatrelu_kernel(const T& x, const float threshold) {
94
+ const float f = (float)x;
95
+ return (T)(f > threshold ? f : 0.0f);
96
+ }
97
+
98
+ template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&, const float)>
99
+ __global__ void act_and_mul_kernel_with_param(
100
+ scalar_t* __restrict__ out, const scalar_t* __restrict__ input, const int d,
101
+ const float param) {
102
+ const int64_t token_idx = blockIdx.x;
103
+ for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
104
+ const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
105
+ const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
106
+ out[token_idx * d + idx] = ACT_FN(x, param) * y;
107
+ }
108
+ }
109
+
110
+ } // namespace vllm
111
+
112
+ #define LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(KERNEL, PARAM) \
113
+ int d = input.size(-1) / 2; \
114
+ int64_t num_tokens = input.numel() / input.size(-1); \
115
+ dim3 grid(num_tokens); \
116
+ dim3 block(std::min(d, 1024)); \
117
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
118
+ const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
119
+ VLLM_DISPATCH_FLOATING_TYPES( \
120
+ input.scalar_type(), "act_and_mul_kernel_with_param", [&] { \
121
+ vllm::act_and_mul_kernel_with_param<scalar_t, KERNEL<scalar_t>> \
122
+ <<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
123
+ input.data_ptr<scalar_t>(), d, \
124
+ PARAM); \
125
+ });
126
+
127
+ void fatrelu_and_mul(torch::Tensor& out, // [..., d],
128
+ torch::Tensor& input, // [..., 2 * d]
129
+ double threshold) {
130
+ LAUNCH_ACTIVATION_GATE_KERNEL_WITH_PARAM(vllm::fatrelu_kernel, threshold);
131
+ }
132
+ namespace vllm {
133
+
134
+ // Element-wise activation kernel template.
135
+ template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
136
+ __global__ void activation_kernel(
137
+ scalar_t* __restrict__ out, // [..., d]
138
+ const scalar_t* __restrict__ input, // [..., d]
139
+ const int d) {
140
+ const int64_t token_idx = blockIdx.x;
141
+ for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
142
+ const scalar_t x = VLLM_LDG(&input[token_idx * d + idx]);
143
+ out[token_idx * d + idx] = ACT_FN(x);
144
+ }
145
+ }
146
+
147
+ } // namespace vllm
148
+
149
+ // Launch element-wise activation kernel.
150
+ #define LAUNCH_ACTIVATION_KERNEL(KERNEL) \
151
+ int d = input.size(-1); \
152
+ int64_t num_tokens = input.numel() / d; \
153
+ dim3 grid(num_tokens); \
154
+ dim3 block(std::min(d, 1024)); \
155
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
156
+ const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
157
+ VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "activation_kernel", [&] { \
158
+ vllm::activation_kernel<scalar_t, KERNEL<scalar_t>> \
159
+ <<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
160
+ input.data_ptr<scalar_t>(), d); \
161
+ });
162
+
163
+ namespace vllm {
164
+
165
+ template <typename T>
166
+ __device__ __forceinline__ T gelu_new_kernel(const T& x) {
167
+ const float x3 = (float)(x * x * x);
168
+ const T t = (T)tanhf((T)(0.79788456f * (float)(x + (T)(0.044715f * x3))));
169
+ return ((T)0.5) * x * (((T)1.0) + t);
170
+ }
171
+
172
+ template <typename T>
173
+ __device__ __forceinline__ T gelu_fast_kernel(const T& x) {
174
+ const float f = (float)x;
175
+ const T t =
176
+ (T)tanhf(((T)(f * 0.79788456f)) * (((T)1.0) + (T)(0.044715f * f) * x));
177
+ return ((T)0.5) * x * (((T)1.0) + t);
178
+ }
179
+
180
+ template <typename T>
181
+ __device__ __forceinline__ T gelu_quick_kernel(const T& x) {
182
+ // x * sigmoid(1.702 * x)
183
+ return (T)(((float)x) / (1.0f + expf(-1.702f * (float)x)));
184
+ }
185
+
186
+ } // namespace vllm
187
+
188
+ void gelu_new(torch::Tensor& out, // [..., d]
189
+ torch::Tensor& input) // [..., d]
190
+ {
191
+ LAUNCH_ACTIVATION_KERNEL(vllm::gelu_new_kernel);
192
+ }
193
+
194
+ void gelu_fast(torch::Tensor& out, // [..., d]
195
+ torch::Tensor& input) // [..., d]
196
+ {
197
+ LAUNCH_ACTIVATION_KERNEL(vllm::gelu_fast_kernel);
198
+ }
199
+
200
+ void gelu_quick(torch::Tensor& out, // [..., d]
201
+ torch::Tensor& input) // [..., d]
202
+ {
203
+ LAUNCH_ACTIVATION_KERNEL(vllm::gelu_quick_kernel);
204
+ }
activation/cuda_compat.h ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #ifdef USE_ROCM
4
+ #include <hip/hip_runtime.h>
5
+ #endif
6
+
7
+ #ifndef USE_ROCM
8
+ #define WARP_SIZE 32
9
+ #else
10
+ #define WARP_SIZE warpSize
11
+ #endif
12
+
13
+ #ifndef USE_ROCM
14
+ #define VLLM_LDG(arg) __ldg(arg)
15
+ #else
16
+ #define VLLM_LDG(arg) *(arg)
17
+ #endif
18
+
19
+ #ifndef USE_ROCM
20
+ #define VLLM_SHFL_XOR_SYNC(var, lane_mask) \
21
+ __shfl_xor_sync(uint32_t(-1), var, lane_mask)
22
+ #define VLLM_SHFL_XOR_SYNC_WIDTH(var, lane_mask, width) \
23
+ __shfl_xor_sync(uint32_t(-1), var, lane_mask, width)
24
+ #else
25
+ #define VLLM_SHFL_XOR_SYNC(var, lane_mask) __shfl_xor(var, lane_mask)
26
+ #define VLLM_SHFL_XOR_SYNC_WIDTH(var, lane_mask, width) \
27
+ __shfl_xor(var, lane_mask, width)
28
+ #endif
29
+
30
+ #ifndef USE_ROCM
31
+ #define VLLM_SHFL_SYNC(var, src_lane) __shfl_sync(uint32_t(-1), var, src_lane)
32
+ #else
33
+ #define VLLM_SHFL_SYNC(var, src_lane) __shfl(var, src_lane)
34
+ #endif
35
+
36
+ #ifndef USE_ROCM
37
+ #define VLLM_SHFL_DOWN_SYNC(var, lane_delta) \
38
+ __shfl_down_sync(uint32_t(-1), var, lane_delta)
39
+ #else
40
+ #define VLLM_SHFL_DOWN_SYNC(var, lane_delta) __shfl_down(var, lane_delta)
41
+ #endif
42
+
43
+ #ifndef USE_ROCM
44
+ #define VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(FUNC, VAL) \
45
+ cudaFuncSetAttribute(FUNC, cudaFuncAttributeMaxDynamicSharedMemorySize, VAL)
46
+ #else
47
+ #define VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(FUNC, VAL) \
48
+ hipFuncSetAttribute(FUNC, hipFuncAttributeMaxDynamicSharedMemorySize, VAL)
49
+ #endif
activation/dispatch_utils.h ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Adapted from
3
+ * https://github.com/pytorch/pytorch/blob/v2.0.1/aten/src/ATen/Dispatch.h
4
+ */
5
+ #pragma once
6
+
7
+ #include <torch/all.h>
8
+
9
+ #define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
10
+ AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
11
+ AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
12
+ AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
13
+
14
+ #define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
15
+ AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
16
+
17
+ #define VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(...) \
18
+ AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
19
+ AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
20
+ AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
21
+ AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__)
22
+
23
+ #define VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(TYPE, NAME, ...) \
24
+ AT_DISPATCH_SWITCH(TYPE, NAME, \
25
+ VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(__VA_ARGS__))
26
+
27
+ #define VLLM_DISPATCH_CASE_INTEGRAL_TYPES(...) \
28
+ AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__) \
29
+ AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__) \
30
+ AT_DISPATCH_CASE(at::ScalarType::Short, __VA_ARGS__) \
31
+ AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
32
+ AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__)
33
+
34
+ #define VLLM_DISPATCH_INTEGRAL_TYPES(TYPE, NAME, ...) \
35
+ AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__))
build.toml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [general]
2
+ name = "activation"
3
+
4
+ [torch]
5
+ src = [
6
+ "torch-ext/torch_binding.cpp",
7
+ "torch-ext/torch_binding.h"
8
+ ]
9
+
10
+ [kernel.activation]
11
+ cuda-capabilities = [ "7.0", "7.2", "7.5", "8.0", "8.6", "8.7", "8.9", "9.0" ]
12
+ src = [
13
+ "activation/activation_kernels.cu",
14
+ "activation/cuda_compat.h",
15
+ "activation/dispatch_utils.h",
16
+ ]
17
+ depends = [ "torch" ]
build/{torch28-cxx11-cu126-aarch64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/__init__.py RENAMED
@@ -1,8 +1,15 @@
1
  import torch
2
 
3
- from ._ops import ops
 
 
 
 
 
4
 
5
- from . import layers
 
 
6
 
7
 
8
  def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
10
  return out
11
 
12
 
13
- def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.mul_and_silu(out, x)
15
- return out
16
-
17
-
18
  def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
  ops.gelu_and_mul(out, x)
20
  return out
@@ -43,15 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
43
  def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
44
  ops.gelu_quick(out, x)
45
  return out
46
-
47
-
48
- __all__ = [
49
- "silu_and_mul",
50
- "gelu_and_mul",
51
- "gelu_tanh_and_mul",
52
- "fatrelu_and_mul",
53
- "gelu_fast",
54
- "gelu_new",
55
- "gelu_quick",
56
- "layers",
57
- ]
 
1
  import torch
2
 
3
+ try:
4
+ from ._ops import ops
5
+ except ImportError as e:
6
+ # Fallback for local development.
7
+ try:
8
+ import _activation
9
 
10
+ ops = torch.ops._activition
11
+ except ImportError:
12
+ raise e
13
 
14
 
15
  def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
 
17
  return out
18
 
19
 
 
 
 
 
 
20
  def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
21
  ops.gelu_and_mul(out, x)
22
  return out
 
45
  def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
46
  ops.gelu_quick(out, x)
47
  return out
 
 
 
 
 
 
 
 
 
 
 
 
build/{torch27-cxx11-cu118-x86_64-linux/activation/_activation_beeaae6.abi3.so → torch25-cxx11-cu118-x86_64-linux/activation/_activation_o63kkyjirmkf4.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ce06ec284ecd4ac5423d3822a60cd9eeb686d0054b38d66567de73e1137b0567
3
- size 2773632
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d50cdabfbed1df74e921ac34ff00bca0555977b14ef8082ddae7b1f30985a494
3
+ size 2370160
build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/_ops.py RENAMED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_beeaae6
3
- ops = torch.ops._activation_beeaae6
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_beeaae6::{op_name}"
 
1
  import torch
2
+ from . import _activation_o63kkyjirmkf4
3
+ ops = torch.ops._activation_o63kkyjirmkf4
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_o63kkyjirmkf4::{op_name}"
build/{torch28-cxx11-cu128-aarch64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/__init__.py RENAMED
@@ -1,8 +1,15 @@
1
  import torch
2
 
3
- from ._ops import ops
 
 
 
 
 
4
 
5
- from . import layers
 
 
6
 
7
 
8
  def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
10
  return out
11
 
12
 
13
- def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.mul_and_silu(out, x)
15
- return out
16
-
17
-
18
  def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
  ops.gelu_and_mul(out, x)
20
  return out
@@ -43,15 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
43
  def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
44
  ops.gelu_quick(out, x)
45
  return out
46
-
47
-
48
- __all__ = [
49
- "silu_and_mul",
50
- "gelu_and_mul",
51
- "gelu_tanh_and_mul",
52
- "fatrelu_and_mul",
53
- "gelu_fast",
54
- "gelu_new",
55
- "gelu_quick",
56
- "layers",
57
- ]
 
1
  import torch
2
 
3
+ try:
4
+ from ._ops import ops
5
+ except ImportError as e:
6
+ # Fallback for local development.
7
+ try:
8
+ import _activation
9
 
10
+ ops = torch.ops._activition
11
+ except ImportError:
12
+ raise e
13
 
14
 
15
  def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
 
17
  return out
18
 
19
 
 
 
 
 
 
20
  def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
21
  ops.gelu_and_mul(out, x)
22
  return out
 
45
  def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
46
  ops.gelu_quick(out, x)
47
  return out
 
 
 
 
 
 
 
 
 
 
 
 
build/{torch27-cxx11-cu126-x86_64-linux/activation/_activation_beeaae6.abi3.so → torch25-cxx11-cu121-x86_64-linux/activation/_activation_vrl36m2ejer54.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a529bd105aca5081398d63329e829b6b159570424cd654d3a9f275ca9a720e82
3
- size 2852200
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd0709ef09c8f0c18d1dc4a36c8096c59459bece61f5f5dbea95d1e73f54d44
3
+ size 2393264
build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/_ops.py RENAMED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_beeaae6
3
- ops = torch.ops._activation_beeaae6
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_beeaae6::{op_name}"
 
1
  import torch
2
+ from . import _activation_vrl36m2ejer54
3
+ ops = torch.ops._activation_vrl36m2ejer54
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_vrl36m2ejer54::{op_name}"
build/{torch27-cxx11-cu128-aarch64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/__init__.py RENAMED
@@ -1,8 +1,15 @@
1
  import torch
2
 
3
- from ._ops import ops
 
 
 
 
 
4
 
5
- from . import layers
 
 
6
 
7
 
8
  def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
10
  return out
11
 
12
 
13
- def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.mul_and_silu(out, x)
15
- return out
16
-
17
-
18
  def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
  ops.gelu_and_mul(out, x)
20
  return out
@@ -30,20 +32,6 @@ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0)
30
  return out
31
 
32
 
33
- def gelu(out: torch.Tensor, x: torch.Tensor) -> None:
34
- ops.gelu(out, x)
35
- return out
36
-
37
- def silu(out: torch.Tensor, x: torch.Tensor) -> None:
38
- ops.silu(out, x)
39
- return out
40
-
41
-
42
- def gelu_tanh(out: torch.Tensor, x: torch.Tensor) -> None:
43
- ops.gelu_tanh(out, x)
44
- return out
45
-
46
-
47
  def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
48
  ops.gelu_fast(out, x)
49
  return out
@@ -57,19 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
57
  def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
58
  ops.gelu_quick(out, x)
59
  return out
60
-
61
-
62
- __all__ = [
63
- "silu_and_mul",
64
- "mul_and_silu",
65
- "gelu_and_mul",
66
- "gelu_tanh_and_mul",
67
- "fatrelu_and_mul",
68
- "gelu_fast",
69
- "gelu_new",
70
- "gelu_quick",
71
- "gelu_tanh",
72
- "silu",
73
- "gelu",
74
- "layers",
75
- ]
 
1
  import torch
2
 
3
+ try:
4
+ from ._ops import ops
5
+ except ImportError as e:
6
+ # Fallback for local development.
7
+ try:
8
+ import _activation
9
 
10
+ ops = torch.ops._activition
11
+ except ImportError:
12
+ raise e
13
 
14
 
15
  def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
 
17
  return out
18
 
19
 
 
 
 
 
 
20
  def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
21
  ops.gelu_and_mul(out, x)
22
  return out
 
32
  return out
33
 
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
36
  ops.gelu_fast(out, x)
37
  return out
 
45
  def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
46
  ops.gelu_quick(out, x)
47
  return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/{torch27-cxx11-cu128-aarch64-linux/activation/_activation_320b408.abi3.so → torch25-cxx11-cu124-x86_64-linux/activation/_activation_va3moa75vw7c2.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:34bdeb9ab72686850aef0a16b225b1b956162edb2cf46cba65c5e5b92ae267ae
3
- size 4207000
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8353447f64e7d2df1a6a341d9c53bced53abef267f079923ae774170d0d57c53
3
+ size 2427936
build/{torch27-cxx11-cu128-aarch64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/_ops.py RENAMED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_320b408
3
- ops = torch.ops._activation_320b408
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_320b408::{op_name}"
 
1
  import torch
2
+ from . import _activation_va3moa75vw7c2
3
+ ops = torch.ops._activation_va3moa75vw7c2
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_va3moa75vw7c2::{op_name}"
build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx98-cu118-x86_64-linux}/activation/__init__.py RENAMED
@@ -1,8 +1,15 @@
1
  import torch
2
 
3
- from ._ops import ops
 
 
 
 
 
4
 
5
- from . import layers
 
 
6
 
7
 
8
  def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
10
  return out
11
 
12
 
13
- def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.mul_and_silu(out, x)
15
- return out
16
-
17
-
18
  def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
  ops.gelu_and_mul(out, x)
20
  return out
@@ -30,20 +32,6 @@ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0)
30
  return out
31
 
32
 
33
- def gelu(out: torch.Tensor, x: torch.Tensor) -> None:
34
- ops.gelu(out, x)
35
- return out
36
-
37
- def silu(out: torch.Tensor, x: torch.Tensor) -> None:
38
- ops.silu(out, x)
39
- return out
40
-
41
-
42
- def gelu_tanh(out: torch.Tensor, x: torch.Tensor) -> None:
43
- ops.gelu_tanh(out, x)
44
- return out
45
-
46
-
47
  def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
48
  ops.gelu_fast(out, x)
49
  return out
@@ -57,19 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
57
  def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
58
  ops.gelu_quick(out, x)
59
  return out
60
-
61
-
62
- __all__ = [
63
- "silu_and_mul",
64
- "mul_and_silu",
65
- "gelu_and_mul",
66
- "gelu_tanh_and_mul",
67
- "fatrelu_and_mul",
68
- "gelu_fast",
69
- "gelu_new",
70
- "gelu_quick",
71
- "gelu_tanh",
72
- "silu",
73
- "gelu",
74
- "layers",
75
- ]
 
1
  import torch
2
 
3
+ try:
4
+ from ._ops import ops
5
+ except ImportError as e:
6
+ # Fallback for local development.
7
+ try:
8
+ import _activation
9
 
10
+ ops = torch.ops._activition
11
+ except ImportError:
12
+ raise e
13
 
14
 
15
  def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
 
17
  return out
18
 
19
 
 
 
 
 
 
20
  def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
21
  ops.gelu_and_mul(out, x)
22
  return out
 
32
  return out
33
 
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
36
  ops.gelu_fast(out, x)
37
  return out
 
45
  def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
46
  ops.gelu_quick(out, x)
47
  return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/{torch27-cxx11-cu128-x86_64-linux/activation/_activation_beeaae6.abi3.so → torch25-cxx98-cu118-x86_64-linux/activation/_activation_qr3gs3eckeig4.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0f2cffcb6b5b9a49f03a2df46fc2ad36765676edecb468c233e78e1f5e21e206
3
- size 4127872
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df184a6315118d787a1bd6b435cb45f1ca7828445a1f1c0e55c57645cfbba43a
3
+ size 2362600
build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx98-cu118-x86_64-linux}/activation/_ops.py RENAMED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_beeaae6
3
- ops = torch.ops._activation_beeaae6
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_beeaae6::{op_name}"
 
1
  import torch
2
+ from . import _activation_qr3gs3eckeig4
3
+ ops = torch.ops._activation_qr3gs3eckeig4
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_qr3gs3eckeig4::{op_name}"
build/torch25-cxx98-cu121-x86_64-linux/activation/__init__.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ try:
4
+ from ._ops import ops
5
+ except ImportError as e:
6
+ # Fallback for local development.
7
+ try:
8
+ import _activation
9
+
10
+ ops = torch.ops._activition
11
+ except ImportError:
12
+ raise e
13
+
14
+
15
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
16
+ ops.silu_and_mul(out, x)
17
+ return out
18
+
19
+
20
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
21
+ ops.gelu_and_mul(out, x)
22
+ return out
23
+
24
+
25
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
26
+ ops.gelu_tanh_and_mul(out, x)
27
+ return out
28
+
29
+
30
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
31
+ ops.fatrelu_and_mul(out, x, threshold)
32
+ return out
33
+
34
+
35
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
36
+ ops.gelu_fast(out, x)
37
+ return out
38
+
39
+
40
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
41
+ ops.gelu_new(out, x)
42
+ return out
43
+
44
+
45
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
46
+ ops.gelu_quick(out, x)
47
+ return out
build/torch25-cxx98-cu121-x86_64-linux/activation/_activation_p7gbzt25w3zg2.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccb13cfc2e45cf483e8b9f77f1760f28b48bcf185508d51b32d45bc759c4e8bb
3
+ size 2385440
build/torch25-cxx98-cu121-x86_64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_p7gbzt25w3zg2
3
+ ops = torch.ops._activation_p7gbzt25w3zg2
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_p7gbzt25w3zg2::{op_name}"
build/torch25-cxx98-cu124-x86_64-linux/activation/__init__.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ try:
4
+ from ._ops import ops
5
+ except ImportError as e:
6
+ # Fallback for local development.
7
+ try:
8
+ import _activation
9
+
10
+ ops = torch.ops._activition
11
+ except ImportError:
12
+ raise e
13
+
14
+
15
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
16
+ ops.silu_and_mul(out, x)
17
+ return out
18
+
19
+
20
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
21
+ ops.gelu_and_mul(out, x)
22
+ return out
23
+
24
+
25
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
26
+ ops.gelu_tanh_and_mul(out, x)
27
+ return out
28
+
29
+
30
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
31
+ ops.fatrelu_and_mul(out, x, threshold)
32
+ return out
33
+
34
+
35
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
36
+ ops.gelu_fast(out, x)
37
+ return out
38
+
39
+
40
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
41
+ ops.gelu_new(out, x)
42
+ return out
43
+
44
+
45
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
46
+ ops.gelu_quick(out, x)
47
+ return out
build/torch25-cxx98-cu124-x86_64-linux/activation/_activation_jg7yaigtn7wco.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f8048853e8cb06e8574a9a9497800d2be438f7989d79f44dcf2e0ced38a75a9
3
+ size 2420192
build/torch25-cxx98-cu124-x86_64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_jg7yaigtn7wco
3
+ ops = torch.ops._activation_jg7yaigtn7wco
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_jg7yaigtn7wco::{op_name}"
build/torch26-cxx11-cu118-x86_64-linux/activation/__init__.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ try:
4
+ from ._ops import ops
5
+ except ImportError as e:
6
+ # Fallback for local development.
7
+ try:
8
+ import _activation
9
+
10
+ ops = torch.ops._activition
11
+ except ImportError:
12
+ raise e
13
+
14
+
15
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
16
+ ops.silu_and_mul(out, x)
17
+ return out
18
+
19
+
20
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
21
+ ops.gelu_and_mul(out, x)
22
+ return out
23
+
24
+
25
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
26
+ ops.gelu_tanh_and_mul(out, x)
27
+ return out
28
+
29
+
30
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
31
+ ops.fatrelu_and_mul(out, x, threshold)
32
+ return out
33
+
34
+
35
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
36
+ ops.gelu_fast(out, x)
37
+ return out
38
+
39
+
40
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
41
+ ops.gelu_new(out, x)
42
+ return out
43
+
44
+
45
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
46
+ ops.gelu_quick(out, x)
47
+ return out
build/torch26-cxx11-cu118-x86_64-linux/activation/_activation_ncisyrun7guwk.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cde5439e78ba0e1aaa1937d798b214b46d38cbab8e4384b93a22239fed1a4dd4
3
+ size 2370264
build/torch26-cxx11-cu118-x86_64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_ncisyrun7guwk
3
+ ops = torch.ops._activation_ncisyrun7guwk
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_ncisyrun7guwk::{op_name}"
build/torch26-cxx11-cu124-x86_64-linux/activation/__init__.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ try:
4
+ from ._ops import ops
5
+ except ImportError as e:
6
+ # Fallback for local development.
7
+ try:
8
+ import _activation
9
+
10
+ ops = torch.ops._activition
11
+ except ImportError:
12
+ raise e
13
+
14
+
15
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
16
+ ops.silu_and_mul(out, x)
17
+ return out
18
+
19
+
20
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
21
+ ops.gelu_and_mul(out, x)
22
+ return out
23
+
24
+
25
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
26
+ ops.gelu_tanh_and_mul(out, x)
27
+ return out
28
+
29
+
30
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
31
+ ops.fatrelu_and_mul(out, x, threshold)
32
+ return out
33
+
34
+
35
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
36
+ ops.gelu_fast(out, x)
37
+ return out
38
+
39
+
40
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
41
+ ops.gelu_new(out, x)
42
+ return out
43
+
44
+
45
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
46
+ ops.gelu_quick(out, x)
47
+ return out
build/torch26-cxx11-cu124-x86_64-linux/activation/_activation_ochhfvlnc3vyc.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6bd20d411c51fc8729b15cab6a60c5c9185222474aa035489e1bff299d76682
3
+ size 2428040
build/torch26-cxx11-cu124-x86_64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_ochhfvlnc3vyc
3
+ ops = torch.ops._activation_ochhfvlnc3vyc
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_ochhfvlnc3vyc::{op_name}"
build/torch26-cxx11-cu126-x86_64-linux/activation/__init__.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ try:
4
+ from ._ops import ops
5
+ except ImportError as e:
6
+ # Fallback for local development.
7
+ try:
8
+ import _activation
9
+
10
+ ops = torch.ops._activition
11
+ except ImportError:
12
+ raise e
13
+
14
+
15
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
16
+ ops.silu_and_mul(out, x)
17
+ return out
18
+
19
+
20
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
21
+ ops.gelu_and_mul(out, x)
22
+ return out
23
+
24
+
25
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
26
+ ops.gelu_tanh_and_mul(out, x)
27
+ return out
28
+
29
+
30
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
31
+ ops.fatrelu_and_mul(out, x, threshold)
32
+ return out
33
+
34
+
35
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
36
+ ops.gelu_fast(out, x)
37
+ return out
38
+
39
+
40
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
41
+ ops.gelu_new(out, x)
42
+ return out
43
+
44
+
45
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
46
+ ops.gelu_quick(out, x)
47
+ return out
build/torch26-cxx11-cu126-x86_64-linux/activation/_activation_u6vnqubnicksq.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41c18b20c2bf8c49d2d3088a9bc1aad4293df0b57eafc9b141a9e8e595fe551a
3
+ size 2436672
build/torch26-cxx11-cu126-x86_64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_u6vnqubnicksq
3
+ ops = torch.ops._activation_u6vnqubnicksq
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_u6vnqubnicksq::{op_name}"
build/torch26-cxx98-cu118-x86_64-linux/activation/__init__.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ try:
4
+ from ._ops import ops
5
+ except ImportError as e:
6
+ # Fallback for local development.
7
+ try:
8
+ import _activation
9
+
10
+ ops = torch.ops._activition
11
+ except ImportError:
12
+ raise e
13
+
14
+
15
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
16
+ ops.silu_and_mul(out, x)
17
+ return out
18
+
19
+
20
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
21
+ ops.gelu_and_mul(out, x)
22
+ return out
23
+
24
+
25
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
26
+ ops.gelu_tanh_and_mul(out, x)
27
+ return out
28
+
29
+
30
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
31
+ ops.fatrelu_and_mul(out, x, threshold)
32
+ return out
33
+
34
+
35
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
36
+ ops.gelu_fast(out, x)
37
+ return out
38
+
39
+
40
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
41
+ ops.gelu_new(out, x)
42
+ return out
43
+
44
+
45
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
46
+ ops.gelu_quick(out, x)
47
+ return out
build/torch26-cxx98-cu118-x86_64-linux/activation/_activation_2vn6ty3gfqfb6.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfbcd5da358cd5cb7982d19c8880cf4db6f08b46622a7a953f755ad59e4e1492
3
+ size 2362752
build/torch26-cxx98-cu118-x86_64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_2vn6ty3gfqfb6
3
+ ops = torch.ops._activation_2vn6ty3gfqfb6
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_2vn6ty3gfqfb6::{op_name}"
build/torch26-cxx98-cu124-x86_64-linux/activation/__init__.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ try:
4
+ from ._ops import ops
5
+ except ImportError as e:
6
+ # Fallback for local development.
7
+ try:
8
+ import _activation
9
+
10
+ ops = torch.ops._activition
11
+ except ImportError:
12
+ raise e
13
+
14
+
15
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
16
+ ops.silu_and_mul(out, x)
17
+ return out
18
+
19
+
20
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
21
+ ops.gelu_and_mul(out, x)
22
+ return out
23
+
24
+
25
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
26
+ ops.gelu_tanh_and_mul(out, x)
27
+ return out
28
+
29
+
30
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
31
+ ops.fatrelu_and_mul(out, x, threshold)
32
+ return out
33
+
34
+
35
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
36
+ ops.gelu_fast(out, x)
37
+ return out
38
+
39
+
40
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
41
+ ops.gelu_new(out, x)
42
+ return out
43
+
44
+
45
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
46
+ ops.gelu_quick(out, x)
47
+ return out
build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_myvteedxdpqc6.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1bc928823117c800904bcd3492bf1a0c65a32f6d8a842dc039f55e29831ab49
3
+ size 2420344
build/torch26-cxx98-cu124-x86_64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_myvteedxdpqc6
3
+ ops = torch.ops._activation_myvteedxdpqc6
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_myvteedxdpqc6::{op_name}"
build/torch26-cxx98-cu126-x86_64-linux/activation/__init__.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ try:
4
+ from ._ops import ops
5
+ except ImportError as e:
6
+ # Fallback for local development.
7
+ try:
8
+ import _activation
9
+
10
+ ops = torch.ops._activition
11
+ except ImportError:
12
+ raise e
13
+
14
+
15
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
16
+ ops.silu_and_mul(out, x)
17
+ return out
18
+
19
+
20
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
21
+ ops.gelu_and_mul(out, x)
22
+ return out
23
+
24
+
25
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
26
+ ops.gelu_tanh_and_mul(out, x)
27
+ return out
28
+
29
+
30
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
31
+ ops.fatrelu_and_mul(out, x, threshold)
32
+ return out
33
+
34
+
35
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
36
+ ops.gelu_fast(out, x)
37
+ return out
38
+
39
+
40
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
41
+ ops.gelu_new(out, x)
42
+ return out
43
+
44
+
45
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
46
+ ops.gelu_quick(out, x)
47
+ return out
build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_rbswus6emrhm2.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:474727e434a9cd4ec984a6da7124992ead4ca0fefce9581d0fd503e36c065aed
3
+ size 2424888
build/torch26-cxx98-cu126-x86_64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_rbswus6emrhm2
3
+ ops = torch.ops._activation_rbswus6emrhm2
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_rbswus6emrhm2::{op_name}"
build/torch27-cxx11-cu118-x86_64-linux/activation/__init__.py DELETED
@@ -1,75 +0,0 @@
1
- import torch
2
-
3
- from ._ops import ops
4
-
5
- from . import layers
6
-
7
-
8
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
- ops.silu_and_mul(out, x)
10
- return out
11
-
12
-
13
- def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.mul_and_silu(out, x)
15
- return out
16
-
17
-
18
- def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
- ops.gelu_and_mul(out, x)
20
- return out
21
-
22
-
23
- def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
24
- ops.gelu_tanh_and_mul(out, x)
25
- return out
26
-
27
-
28
- def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
29
- ops.fatrelu_and_mul(out, x, threshold)
30
- return out
31
-
32
-
33
- def gelu(out: torch.Tensor, x: torch.Tensor) -> None:
34
- ops.gelu(out, x)
35
- return out
36
-
37
- def silu(out: torch.Tensor, x: torch.Tensor) -> None:
38
- ops.silu(out, x)
39
- return out
40
-
41
-
42
- def gelu_tanh(out: torch.Tensor, x: torch.Tensor) -> None:
43
- ops.gelu_tanh(out, x)
44
- return out
45
-
46
-
47
- def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
48
- ops.gelu_fast(out, x)
49
- return out
50
-
51
-
52
- def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
53
- ops.gelu_new(out, x)
54
- return out
55
-
56
-
57
- def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
58
- ops.gelu_quick(out, x)
59
- return out
60
-
61
-
62
- __all__ = [
63
- "silu_and_mul",
64
- "mul_and_silu",
65
- "gelu_and_mul",
66
- "gelu_tanh_and_mul",
67
- "fatrelu_and_mul",
68
- "gelu_fast",
69
- "gelu_new",
70
- "gelu_quick",
71
- "gelu_tanh",
72
- "silu",
73
- "gelu",
74
- "layers",
75
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch27-cxx11-cu118-x86_64-linux/activation/__pycache__/__init__.cpython-313.pyc DELETED
Binary file (3.25 kB)
 
build/torch27-cxx11-cu118-x86_64-linux/activation/__pycache__/_ops.cpython-313.pyc DELETED
Binary file (526 Bytes)
 
build/torch27-cxx11-cu118-x86_64-linux/activation/__pycache__/layers.cpython-313.pyc DELETED
Binary file (8.92 kB)
 
build/torch27-cxx11-cu118-x86_64-linux/activation/layers.py DELETED
@@ -1,179 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from ._ops import ops
5
-
6
-
7
- class SiluAndMul(nn.Module):
8
- """An activation function for SwiGLU.
9
-
10
- The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
11
-
12
- Shapes:
13
- x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
14
- return: (num_tokens, d) or (batch_size, seq_len, d)
15
- """
16
-
17
- can_torch_compile: bool = True
18
-
19
- def forward(self, x: torch.Tensor):
20
- d = x.shape[-1] // 2
21
- output_shape = x.shape[:-1] + (d,)
22
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
23
- ops.silu_and_mul(out, x)
24
- return out
25
-
26
- class Silu(nn.Module):
27
- """An activation function for SiLU.
28
-
29
- The function computes x -> silu(x).
30
-
31
- Shapes:
32
- x: (num_tokens, d) or (batch_size, seq_len, d)
33
- return: (num_tokens, d) or (batch_size, seq_len, d)
34
- """
35
-
36
- can_torch_compile: bool = True
37
-
38
- def forward(self, x: torch.Tensor):
39
- out = torch.empty_like(x)
40
- ops.silu(out, x)
41
- return out
42
-
43
- class Gelu(nn.Module):
44
- """An activation function for GELU.
45
-
46
- The function computes x -> gelu(x).
47
-
48
- Shapes:
49
- x: (num_tokens, d) or (batch_size, seq_len, d)
50
- return: (num_tokens, d) or (batch_size, seq_len, d)
51
- """
52
-
53
- can_torch_compile: bool = True
54
-
55
- def forward(self, x: torch.Tensor):
56
- out = torch.empty_like(x)
57
- ops.gelu(out, x)
58
- return out
59
-
60
- class GeluTanh(nn.Module):
61
- """An activation function for GELU with `tanh` approximation.
62
-
63
- The function computes x -> gelu_tanh(x).
64
-
65
- Shapes:
66
- x: (num_tokens, d) or (batch_size, seq_len, d)
67
- return: (num_tokens, d) or (batch_size, seq_len, d)
68
- """
69
-
70
- can_torch_compile: bool = True
71
-
72
- def forward(self, x: torch.Tensor):
73
- out = torch.empty_like(x)
74
- ops.gelu_tanh(out, x)
75
- return out
76
-
77
-
78
- class MulAndSilu(nn.Module):
79
- """An activation function for SwiGLU.
80
-
81
- The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
82
-
83
- Shapes:
84
- x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
85
- return: (num_tokens, d) or (batch_size, seq_len, d)
86
- """
87
-
88
- can_torch_compile: bool = True
89
-
90
- def forward(self, x: torch.Tensor) -> torch.Tensor:
91
- d = x.shape[-1] // 2
92
- output_shape = x.shape[:-1] + (d,)
93
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
94
- ops.mul_and_silu(out, x)
95
- return out
96
-
97
-
98
- class GeluAndMul(nn.Module):
99
- """An activation function for GeGLU.
100
-
101
- The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
102
-
103
- Shapes:
104
- x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
105
- return: (batch_size, seq_len, d) or (num_tokens, d)
106
- """
107
-
108
- can_torch_compile: bool = True
109
-
110
- def forward(self, x: torch.Tensor):
111
- d = x.shape[-1] // 2
112
- output_shape = x.shape[:-1] + (d,)
113
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
114
- ops.gelu_and_mul(out, x)
115
- return out
116
-
117
-
118
- class GeluTanhAndMul(nn.Module):
119
- can_torch_compile: bool = True
120
-
121
- def forward(self, x: torch.Tensor):
122
- d = x.shape[-1] // 2
123
- output_shape = x.shape[:-1] + (d,)
124
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
125
- ops.gelu_tanh_and_mul(out, x)
126
- return out
127
-
128
-
129
- class FatreluAndMul(nn.Module):
130
- """An activation function for FATReLU.
131
-
132
- The function computes x -> FATReLU(x[:d]) * x[d:] where
133
- d = x.shape[-1] // 2.
134
- This is used in openbmb/MiniCPM-S-1B-sft.
135
-
136
- Shapes:
137
- x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
138
- return: (num_tokens, d) or (batch_size, seq_len, d)
139
- """
140
-
141
- can_torch_compile: bool = True
142
-
143
- def __init__(self, threshold: float = 0.0):
144
- super().__init__()
145
- self.threshold = threshold
146
-
147
- def forward(self, x: torch.Tensor):
148
- d = x.shape[-1] // 2
149
- output_shape = x.shape[:-1] + (d,)
150
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
151
- ops.fatrelu_and_mul(out, x, self.threshold)
152
- return out
153
-
154
-
155
- class FastGELU(nn.Module):
156
- can_torch_compile: bool = True
157
-
158
- def forward(self, x: torch.Tensor) -> torch.Tensor:
159
- out = torch.empty_like(x)
160
- ops.gelu_fast(out, x)
161
- return out
162
-
163
-
164
- class NewGELU(nn.Module):
165
- can_torch_compile: bool = True
166
-
167
- def forward(self, x: torch.Tensor) -> torch.Tensor:
168
- out = torch.empty_like(x)
169
- ops.gelu_new(out, x)
170
- return out
171
-
172
-
173
- class QuickGELU(nn.Module):
174
- can_torch_compile: bool = True
175
-
176
- def forward(self, x: torch.Tensor) -> torch.Tensor:
177
- out = torch.empty_like(x)
178
- ops.gelu_quick(out, x)
179
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch27-cxx11-cu126-x86_64-linux/activation/__init__.py DELETED
@@ -1,75 +0,0 @@
1
- import torch
2
-
3
- from ._ops import ops
4
-
5
- from . import layers
6
-
7
-
8
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
- ops.silu_and_mul(out, x)
10
- return out
11
-
12
-
13
- def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.mul_and_silu(out, x)
15
- return out
16
-
17
-
18
- def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
- ops.gelu_and_mul(out, x)
20
- return out
21
-
22
-
23
- def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
24
- ops.gelu_tanh_and_mul(out, x)
25
- return out
26
-
27
-
28
- def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
29
- ops.fatrelu_and_mul(out, x, threshold)
30
- return out
31
-
32
-
33
- def gelu(out: torch.Tensor, x: torch.Tensor) -> None:
34
- ops.gelu(out, x)
35
- return out
36
-
37
- def silu(out: torch.Tensor, x: torch.Tensor) -> None:
38
- ops.silu(out, x)
39
- return out
40
-
41
-
42
- def gelu_tanh(out: torch.Tensor, x: torch.Tensor) -> None:
43
- ops.gelu_tanh(out, x)
44
- return out
45
-
46
-
47
- def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
48
- ops.gelu_fast(out, x)
49
- return out
50
-
51
-
52
- def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
53
- ops.gelu_new(out, x)
54
- return out
55
-
56
-
57
- def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
58
- ops.gelu_quick(out, x)
59
- return out
60
-
61
-
62
- __all__ = [
63
- "silu_and_mul",
64
- "mul_and_silu",
65
- "gelu_and_mul",
66
- "gelu_tanh_and_mul",
67
- "fatrelu_and_mul",
68
- "gelu_fast",
69
- "gelu_new",
70
- "gelu_quick",
71
- "gelu_tanh",
72
- "silu",
73
- "gelu",
74
- "layers",
75
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch27-cxx11-cu126-x86_64-linux/activation/__pycache__/__init__.cpython-313.pyc DELETED
Binary file (3.25 kB)
 
build/torch27-cxx11-cu126-x86_64-linux/activation/__pycache__/_ops.cpython-313.pyc DELETED
Binary file (526 Bytes)
 
build/torch27-cxx11-cu126-x86_64-linux/activation/__pycache__/layers.cpython-313.pyc DELETED
Binary file (8.92 kB)