MobileNetV3
Collection
4 items
โข
Updated
Instantiates the MobileNetV3 architecture.
References
For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.
Keras and KerasHub can be installed with:
pip install -U -q keras-hub
pip install -U -q keras
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the Keras Getting Started page.
The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
Preset name | Parameters | Description |
---|---|---|
mobilenet_v3_small_050_imagenet | 278.78K | Small MobileNet V3 model pre-trained on the ImageNet 1k dataset at a 224x224 resolution. |
mobilenet_v3_large_100_imagenet | ||
mobilenet_v3_large_100_imagenet_21k | ||
mobilenet_v3_small_100_imagenet |
Arguments
Rescaling(scale=1 / 255)
layer.layers.Input()
)
to use as image input for the model.alpha
< 1.0, proportionally decreases the number
of filters in each layer.alpha
> 1.0, proportionally increases the number
of filters in each layer.alpha
= 1, default number of filters from the paper
are used at each layer.import keras_cv
import numpy as np
input_data = np.ones(shape=(8, 224, 224, 3))
model = keras_cv.models.MobileNetV3Backbone.from_preset("mobilenet_v3_large_100_imagenet")
output = model(input_data)
import keras_cv
import numpy as np
input_data = np.ones(shape=(8, 224, 224, 3))
model = keras_cv.models.MobileNetV3Backbone.from_preset("hf://keras/mobilenet_v3_large_100_imagenet")
output = model(input_data)