layoutlmv3-wildreceipt

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3399
  • Precision: 0.8693
  • Recall: 0.8761
  • F1: 0.8727
  • Accuracy: 0.9225

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.4 100 1.3257 0.6259 0.2897 0.3961 0.6677
No log 0.8 200 0.8512 0.6479 0.5297 0.5829 0.7870
No log 1.2 300 0.6603 0.7311 0.6472 0.6866 0.8302
No log 1.6 400 0.5604 0.7580 0.7144 0.7355 0.8515
1.0344 2.0 500 0.4834 0.7920 0.7515 0.7712 0.8711
1.0344 2.4 600 0.4352 0.8070 0.7792 0.7929 0.8812
1.0344 2.8 700 0.4045 0.8146 0.8149 0.8148 0.8925
1.0344 3.2 800 0.4051 0.8067 0.8208 0.8137 0.8897
1.0344 3.6 900 0.3774 0.8211 0.8328 0.8269 0.8977
0.3942 4.0 1000 0.3556 0.8355 0.8340 0.8347 0.9025
0.3942 4.4 1100 0.3703 0.8211 0.8496 0.8351 0.9001
0.3942 4.8 1200 0.3430 0.8367 0.8486 0.8426 0.9057
0.3942 5.2 1300 0.3492 0.8349 0.8469 0.8409 0.9051
0.3942 5.6 1400 0.3259 0.8551 0.8498 0.8525 0.9108
0.2561 6.0 1500 0.3276 0.8422 0.8610 0.8515 0.9113
0.2561 6.4 1600 0.3307 0.8546 0.8497 0.8522 0.9110
0.2561 6.8 1700 0.3180 0.8527 0.8559 0.8543 0.9136
0.2561 7.2 1800 0.3239 0.8525 0.8593 0.8559 0.9135
0.2561 7.6 1900 0.3322 0.8499 0.8703 0.8600 0.9145
0.1866 8.0 2000 0.3265 0.8465 0.8681 0.8572 0.9131
0.1866 8.4 2100 0.3248 0.8588 0.8618 0.8603 0.9170
0.1866 8.8 2200 0.3269 0.8579 0.8629 0.8604 0.9162
0.1866 9.2 2300 0.3273 0.8656 0.8663 0.8660 0.9195
0.1866 9.6 2400 0.3312 0.8593 0.8702 0.8647 0.9187
0.1439 10.0 2500 0.3200 0.8639 0.8703 0.8671 0.9209
0.1439 10.4 2600 0.3367 0.8540 0.8761 0.8649 0.9183
0.1439 10.8 2700 0.3370 0.8614 0.8699 0.8656 0.9191
0.1439 11.2 2800 0.3294 0.8735 0.8690 0.8712 0.9221
0.1439 11.6 2900 0.3405 0.8653 0.8734 0.8693 0.9205
0.1186 12.0 3000 0.3334 0.8629 0.8767 0.8697 0.9210
0.1186 12.4 3100 0.3376 0.8653 0.8747 0.8700 0.9218
0.1186 12.8 3200 0.3362 0.8663 0.8752 0.8707 0.9209
0.1186 13.2 3300 0.3317 0.8729 0.8719 0.8724 0.9225
0.1186 13.6 3400 0.3408 0.8706 0.8714 0.8710 0.9213
0.0997 14.0 3500 0.3399 0.8693 0.8761 0.8727 0.9225
0.0997 14.4 3600 0.3445 0.8623 0.8767 0.8694 0.9208
0.0997 14.8 3700 0.3403 0.8673 0.8775 0.8724 0.9225
0.0997 15.2 3800 0.3492 0.8652 0.8763 0.8707 0.9209
0.0997 15.6 3900 0.3442 0.8692 0.8760 0.8726 0.9228
0.0891 16.0 4000 0.3441 0.8672 0.8767 0.8719 0.9225

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
27
Safetensors
Model size
126M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kaydee/layoutlmv3-wildreceipt

Finetuned
(218)
this model

Space using kaydee/layoutlmv3-wildreceipt 1