Edit model card

layoutlmv3-finetuned-wildreceipt

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3146
  • Precision: 0.8798
  • Recall: 0.8807
  • F1: 0.8802
  • Accuracy: 0.9260

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.3155 100 1.3209 0.5494 0.3560 0.4320 0.6831
No log 0.6309 200 0.8725 0.6581 0.5196 0.5807 0.7703
No log 0.9464 300 0.6947 0.7348 0.6701 0.7009 0.8309
No log 1.2618 400 0.5767 0.7727 0.7133 0.7418 0.8519
1.0485 1.5773 500 0.5011 0.7667 0.7605 0.7636 0.8673
1.0485 1.8927 600 0.4996 0.7616 0.7818 0.7716 0.8668
1.0485 2.2082 700 0.4144 0.8010 0.7989 0.7999 0.8867
1.0485 2.5237 800 0.3943 0.8162 0.8231 0.8196 0.8936
1.0485 2.8391 900 0.3821 0.8096 0.8340 0.8216 0.8963
0.418 3.1546 1000 0.3637 0.8350 0.8428 0.8389 0.9031
0.418 3.4700 1100 0.3422 0.8518 0.8314 0.8415 0.9081
0.418 3.7855 1200 0.3425 0.8322 0.8579 0.8449 0.9057
0.418 4.1009 1300 0.3242 0.8556 0.8541 0.8549 0.9132
0.418 4.4164 1400 0.3267 0.8442 0.8628 0.8534 0.9117
0.28 4.7319 1500 0.3144 0.8565 0.8603 0.8584 0.9152
0.28 5.0473 1600 0.3102 0.8707 0.8617 0.8661 0.9182
0.28 5.3628 1700 0.3291 0.8677 0.8615 0.8646 0.9169
0.28 5.6782 1800 0.2999 0.8587 0.8717 0.8652 0.9182
0.28 5.9937 1900 0.3128 0.8596 0.8680 0.8638 0.9184
0.2106 6.3091 2000 0.3111 0.8667 0.8725 0.8696 0.9207
0.2106 6.6246 2100 0.3053 0.8716 0.8679 0.8697 0.9207
0.2106 6.9401 2200 0.3017 0.8683 0.8756 0.8719 0.9221
0.2106 7.2555 2300 0.2986 0.8800 0.8702 0.8751 0.9236
0.2106 7.5710 2400 0.3012 0.8747 0.8717 0.8732 0.9230
0.1724 7.8864 2500 0.3014 0.8696 0.8776 0.8736 0.9232
0.1724 8.2019 2600 0.3066 0.8763 0.8725 0.8744 0.9232
0.1724 8.5174 2700 0.3181 0.8696 0.8794 0.8745 0.9228
0.1724 8.8328 2800 0.3065 0.8724 0.8816 0.8770 0.9237
0.1724 9.1483 2900 0.3041 0.8753 0.8818 0.8785 0.9259
0.1393 9.4637 3000 0.3205 0.8685 0.8812 0.8748 0.9238
0.1393 9.7792 3100 0.3050 0.8705 0.8838 0.8771 0.9253
0.1393 10.0946 3200 0.3158 0.8746 0.8838 0.8792 0.9246
0.1393 10.4101 3300 0.3086 0.8785 0.8779 0.8782 0.9258
0.1393 10.7256 3400 0.3108 0.8801 0.8822 0.8811 0.9274
0.1222 11.0410 3500 0.3146 0.8798 0.8807 0.8802 0.9260
0.1222 11.3565 3600 0.3111 0.8790 0.8813 0.8802 0.9261
0.1222 11.6719 3700 0.3161 0.8769 0.8848 0.8808 0.9261
0.1222 11.9874 3800 0.3133 0.8769 0.8823 0.8796 0.9262
0.1222 12.3028 3900 0.3137 0.8767 0.8829 0.8798 0.9260
0.1115 12.6183 4000 0.3135 0.8766 0.8833 0.8799 0.9262

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kaydee/layoutlmv3-finetuned-wildreceipt

Finetuned
(213)
this model