Edit model card

LiLT-SER-ES

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5588
  • Precision: 0.6719
  • Recall: 0.6734
  • F1: 0.6726
  • Accuracy: 0.7463

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.2279 8.2 500 0.6790 0.5205 1.2508 0.4589 0.6012
0.032 16.39 1000 0.6936 0.5885 1.9637 0.6321 0.5505
0.0073 24.59 1500 0.7351 0.6175 1.6711 0.5795 0.6608
0.0479 32.79 2000 0.7405 0.6422 1.8259 0.6265 0.6586
0.0666 40.98 2500 0.7424 0.6349 1.8343 0.5937 0.6824
0.0006 49.18 3000 0.7475 0.6536 2.0575 0.6512 0.6559
0.0084 57.38 3500 0.7138 0.6415 2.4488 0.6758 0.6106
0.0002 65.57 4000 0.7571 0.6468 1.9641 0.6406 0.6532
0.0005 73.77 4500 2.2976 0.6699 0.6429 0.6561 0.7413
0.0003 81.97 5000 2.1562 0.6287 0.6653 0.6465 0.7468
0.0007 90.16 5500 2.2806 0.6435 0.6689 0.6560 0.7435
0.0002 98.36 6000 2.0508 0.6294 0.6734 0.6506 0.7538
0.0 106.56 6500 2.2626 0.6602 0.6765 0.6683 0.7498
0.0 114.75 7000 2.3467 0.6687 0.6492 0.6588 0.7409
0.0 122.95 7500 2.4430 0.6773 0.6734 0.6754 0.7447
0.0 131.15 8000 2.3653 0.6643 0.6765 0.6704 0.7476
0.0 139.34 8500 2.2903 0.6567 0.6824 0.6693 0.7498
0.0 147.54 9000 2.4458 0.6536 0.6824 0.6677 0.7440
0.0 155.74 9500 2.5953 0.6703 0.6685 0.6694 0.7423
0.0 163.93 10000 2.5588 0.6719 0.6734 0.6726 0.7463

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
6
Safetensors
Model size
284M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kavg/LiLT-SER-ES

Finetuned
(29)
this model
Finetunes
1 model

Evaluation results