checkpoints

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Precision: 0.4372
  • Recall: 0.6574
  • F1: 0.5252
  • Loss: 0.0001

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 10000

Training results

Training Loss Epoch Step F1 Validation Loss Precision Recall
0.1954 20.0 500 0 0.4094 0 0
0.1588 40.0 1000 0.1420 0.3055 0.3587 0.0886
0.1182 60.0 1500 0.4253 0.1384 0.3810 0.4812
0.0477 80.0 2000 0.4764 0.0216 0.3949 0.6002
0.069 100.0 2500 0.5198 0.0115 0.4564 0.6038
0.0355 120.0 3000 0.5161 0.0018 0.4271 0.6521
0.0268 140.0 3500 0.5254 0.0016 0.4395 0.6530
0.0123 160.0 4000 0.5264 0.0015 0.4382 0.6592
0.0039 180.0 4500 0.5353 0.0011 0.4510 0.6583
0.0139 200.0 5000 0.5390 0.0011 0.4533 0.6646
0.001 220.0 5500 0.5430 0.0042 0.4620 0.6583
0.01 240.0 6000 0.5347 0.0013 0.4531 0.6521
0.0065 260.0 6500 0.5404 0.0001 0.4540 0.6673
0.0046 280.0 7000 0.5252 0.0001 0.4372 0.6574
0.002 300.0 7500 0.5365 0.0007 0.4474 0.6699
0.0002 320.0 8000 0.5393 0.0002 0.4546 0.6628
0.0008 340.0 8500 0.5412 0.0002 0.4569 0.6637
0.0024 360.0 9000 0.4677 0.6601 0.5475 0.0002
0.0001 380.0 9500 0.4560 0.6673 0.5418 0.0002
0.002 400.0 10000 0.4594 0.6628 0.5427 0.0003

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
17
Safetensors
Model size
287M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for kavg/LiLT-RE-JA

Finetuned
(29)
this model
Finetunes
1 model