results

This model is a fine-tuned version of mental/mental-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7715
  • Accuracy: 0.8014
  • F1: 0.8161
  • Precision: 0.7816
  • Recall: 0.8537

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3921 0.99 31 0.4379 0.8042 0.8153 0.7943 0.8374
0.3376 1.98 62 0.4358 0.8112 0.8173 0.8162 0.8184
0.3126 2.98 93 0.4642 0.7972 0.8172 0.7642 0.8780
0.2838 4.0 125 0.4438 0.8196 0.8264 0.8209 0.8320
0.2504 4.99 156 0.5249 0.7958 0.8161 0.7624 0.8780
0.2912 5.98 187 0.6067 0.7972 0.8221 0.7511 0.9079
0.1335 6.98 218 0.7014 0.8 0.8197 0.7665 0.8808
0.1579 7.94 248 0.7715 0.8014 0.8161 0.7816 0.8537

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
6
Safetensors
Model size
125M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for karangupta224/results

Finetuned
(9)
this model