File size: 3,068 Bytes
556fcf5
 
 
a9ddcc2
 
556fcf5
 
 
 
a9ddcc2
 
 
 
 
 
 
 
 
 
 
556fcf5
 
 
 
 
 
 
a9ddcc2
556fcf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
tags:
- generated_from_trainer
datasets:
- kanishka/counterfactual-babylm-pipps-random_removal
metrics:
- accuracy
model-index:
- name: smolm-autoreg-bpe-counterfactual-babylm-pipps-random_removal-seed_211-1e-3
  results:
  - task:
      name: Causal Language Modeling
      type: text-generation
    dataset:
      name: kanishka/counterfactual-babylm-pipps-random_removal
      type: kanishka/counterfactual-babylm-pipps-random_removal
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.40988659662430754
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# smolm-autoreg-bpe-counterfactual-babylm-pipps-random_removal-seed_211-1e-3

This model was trained from scratch on the kanishka/counterfactual-babylm-pipps-random_removal dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4120
- Accuracy: 0.4099

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 211
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 3.6072        | 1.0   | 18592  | 3.7972          | 0.3577   |
| 3.3863        | 2.0   | 37184  | 3.5804          | 0.3804   |
| 3.2556        | 3.0   | 55776  | 3.4730          | 0.3910   |
| 3.1829        | 4.0   | 74368  | 3.4019          | 0.3992   |
| 3.1264        | 5.0   | 92960  | 3.3828          | 0.4020   |
| 3.0827        | 6.0   | 111552 | 3.3849          | 0.4031   |
| 3.0461        | 7.0   | 130144 | 3.3728          | 0.4050   |
| 3.0111        | 8.0   | 148736 | 3.3609          | 0.4069   |
| 2.9857        | 9.0   | 167328 | 3.3496          | 0.4082   |
| 2.9608        | 10.0  | 185920 | 3.3683          | 0.4075   |
| 2.9402        | 11.0  | 204512 | 3.3728          | 0.4086   |
| 2.9154        | 12.0  | 223104 | 3.3845          | 0.4083   |
| 2.891         | 13.0  | 241696 | 3.3741          | 0.4098   |
| 2.8754        | 14.0  | 260288 | 3.3674          | 0.4106   |
| 2.8555        | 15.0  | 278880 | 3.3868          | 0.4095   |
| 2.8368        | 16.0  | 297472 | 3.3892          | 0.4098   |
| 2.8185        | 17.0  | 316064 | 3.3865          | 0.4106   |
| 2.7969        | 18.0  | 334656 | 3.4006          | 0.4099   |
| 2.7805        | 19.0  | 353248 | 3.3997          | 0.4104   |
| 2.7623        | 20.0  | 371840 | 3.4120          | 0.4099   |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1