File size: 3,079 Bytes
e0c3f66 c2189e9 e0c3f66 c2189e9 e0c3f66 c2189e9 e0c3f66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
tags:
- generated_from_trainer
datasets:
- kanishka/counterfactual-babylm-only_other_det_removal
metrics:
- accuracy
model-index:
- name: smolm-autoreg-bpe-counterfactual-babylm-only_other_det_removal-seed_211-1e-3
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: kanishka/counterfactual-babylm-only_other_det_removal
type: kanishka/counterfactual-babylm-only_other_det_removal
metrics:
- name: Accuracy
type: accuracy
value: 0.4109943845202858
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smolm-autoreg-bpe-counterfactual-babylm-only_other_det_removal-seed_211-1e-3
This model was trained from scratch on the kanishka/counterfactual-babylm-only_other_det_removal dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4143
- Accuracy: 0.4110
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 211
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 3.6004 | 1.0 | 18597 | 3.8219 | 0.3575 |
| 3.3852 | 2.0 | 37194 | 3.6092 | 0.3797 |
| 3.2597 | 3.0 | 55791 | 3.4837 | 0.3910 |
| 3.1758 | 4.0 | 74388 | 3.4364 | 0.3981 |
| 3.1197 | 5.0 | 92985 | 3.4116 | 0.4017 |
| 3.08 | 6.0 | 111582 | 3.3782 | 0.4040 |
| 3.0418 | 7.0 | 130179 | 3.3885 | 0.4055 |
| 3.0088 | 8.0 | 148776 | 3.3884 | 0.4062 |
| 2.9856 | 9.0 | 167373 | 3.3548 | 0.4077 |
| 2.9598 | 10.0 | 185970 | 3.3782 | 0.4090 |
| 2.9364 | 11.0 | 204567 | 3.3851 | 0.4093 |
| 2.9156 | 12.0 | 223164 | 3.3803 | 0.4097 |
| 2.8949 | 13.0 | 241761 | 3.3869 | 0.4100 |
| 2.8719 | 14.0 | 260358 | 3.3813 | 0.4104 |
| 2.8526 | 15.0 | 278955 | 3.3859 | 0.4108 |
| 2.8289 | 16.0 | 297552 | 3.3980 | 0.4103 |
| 2.8104 | 17.0 | 316149 | 3.3981 | 0.4109 |
| 2.7958 | 18.0 | 334746 | 3.4054 | 0.4110 |
| 2.781 | 19.0 | 353343 | 3.4057 | 0.4110 |
| 2.7571 | 20.0 | 371940 | 3.4143 | 0.4110 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|