File size: 3,014 Bytes
82dc61b f406c18 82dc61b f406c18 82dc61b f406c18 82dc61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- kanishka/babylm2-clean
metrics:
- accuracy
model-index:
- name: opt-babylm2-clean-20-epochs-earlystop_seed-42_1e-3
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: kanishka/babylm2-clean
type: kanishka/babylm2-clean
metrics:
- name: Accuracy
type: accuracy
value: 0.46725332517112805
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opt-babylm2-clean-20-epochs-earlystop_seed-42_1e-3
This model was trained from scratch on the kanishka/babylm2-clean dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7611
- Accuracy: 0.4673
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| 4.24 | 0.9998 | 2198 | 3.9528 | 0.3447 |
| 3.5581 | 2.0 | 4397 | 3.4120 | 0.3948 |
| 3.2191 | 2.9998 | 6595 | 3.1806 | 0.4180 |
| 3.0495 | 4.0 | 8794 | 3.0720 | 0.4287 |
| 2.9458 | 4.9998 | 10992 | 3.0054 | 0.4354 |
| 2.8669 | 6.0 | 13191 | 2.9663 | 0.4399 |
| 2.8256 | 6.9998 | 15389 | 2.9382 | 0.4430 |
| 2.79 | 8.0 | 17588 | 2.9199 | 0.4452 |
| 2.7624 | 8.9998 | 19786 | 2.9052 | 0.4468 |
| 2.7361 | 10.0 | 21985 | 2.8915 | 0.4482 |
| 2.7354 | 10.9998 | 24183 | 2.8843 | 0.4491 |
| 2.7225 | 12.0 | 26382 | 2.8777 | 0.4500 |
| 2.7092 | 12.9998 | 28580 | 2.8708 | 0.4505 |
| 2.6987 | 14.0 | 30779 | 2.8688 | 0.4509 |
| 2.6894 | 14.9998 | 32977 | 2.8542 | 0.4527 |
| 2.6561 | 16.0 | 35176 | 2.8258 | 0.4564 |
| 2.6055 | 16.9998 | 37374 | 2.8005 | 0.4595 |
| 2.5464 | 18.0 | 39573 | 2.7814 | 0.4627 |
| 2.4778 | 18.9998 | 41771 | 2.7630 | 0.4658 |
| 2.4036 | 19.9955 | 43960 | 2.7611 | 0.4673 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
|