xlnet-large-cased-ner-food-recipe-v2
This model is a fine-tuned version of xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1478
- Precision: 0.8033
- Recall: 0.8867
- F1: 0.8429
- Accuracy: 0.9708
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.5 | 400 | 0.1619 | 0.6591 | 0.8147 | 0.7287 | 0.9507 |
0.4091 | 1.01 | 800 | 0.1488 | 0.7832 | 0.8762 | 0.8271 | 0.9689 |
0.1678 | 1.51 | 1200 | 0.1538 | 0.8116 | 0.8862 | 0.8473 | 0.9712 |
0.1452 | 2.01 | 1600 | 0.1374 | 0.7638 | 0.8653 | 0.8114 | 0.9652 |
0.1359 | 2.51 | 2000 | 0.1450 | 0.7837 | 0.8858 | 0.8316 | 0.9678 |
0.1359 | 3.02 | 2400 | 0.1403 | 0.778 | 0.8853 | 0.8282 | 0.9676 |
0.1143 | 3.52 | 2800 | 0.1515 | 0.8128 | 0.8812 | 0.8456 | 0.9721 |
0.1189 | 4.02 | 3200 | 0.1420 | 0.8069 | 0.8862 | 0.8447 | 0.9711 |
0.1165 | 4.52 | 3600 | 0.1460 | 0.7861 | 0.8848 | 0.8325 | 0.9687 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.