See axolotl config
axolotl version: 0.8.0.dev0
base_model: halcyon-llm/Llama-halcyon-1B-base-checkpoint-20480
tokenizer_config: meta-llama/Llama-3.2-1B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# 学習後のモデルのHFへのアップロードに関する設定
hub_model_id: kajuma/Llama-halcyon-1B-base-sft
hub_strategy: "end"
push_dataset_to_hub:
hf_use_auth_token: true
# Liger Kernelの設定(学習の軽量・高速化)
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_cross_entropy: false
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: true
chat_template: llama3
datasets:
- path: Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered
split: train
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: kanhatakeyama/ramdom-to-fixed-multiturn-Calm3
split: 20240806filtered
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/qlora-out
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: halcyon-instruct
wandb_entity: tepic
wandb_watch:
wandb_name: sft-lora-1
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
cosine_min_lr_ratio: 0.1
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 70
eval_steps: 300
eval_batch_size: 1
eval_table_size:
eval_max_new_tokens:
debug:
weight_decay: 0.01
special_tokens:
pad_token: "<|end_of_text|>"
Llama-halcyon-1B-base-sft
This model is a fine-tuned version of halcyon-llm/Llama-halcyon-1B-base-checkpoint-20480 on the Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered and the kanhatakeyama/ramdom-to-fixed-multiturn-Calm3 datasets. It achieves the following results on the evaluation set:
- Loss: 0.9778
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 70
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5799 | 0.0006 | 1 | 1.6489 |
1.0229 | 0.1680 | 300 | 1.0472 |
1.0495 | 0.3360 | 600 | 1.0141 |
1.0596 | 0.5039 | 900 | 0.9952 |
1.0084 | 0.6719 | 1200 | 0.9834 |
1.0163 | 0.8399 | 1500 | 0.9778 |
Framework versions
- PEFT 0.15.0
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.