File size: 2,908 Bytes
ac115c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
license: apache-2.0
base_model: kaist-ai/mpa-Mistral-7b-v0.2-hf-sft-66k
tags:
- axolotl
- dpo
- trl
- dpo
- generated_from_trainer
model-index:
- name: mpa-Mistral-7b-v0.2-hf-66k-dpo-5e-7
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: kaist-ai/mpa-Mistral-7b-v0.2-hf-sft-66k
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

rl: dpo
datasets:
  - path: kaist-ai/mpa-train-dpo-66k
    type: chatml.argilla
    # conversation: mistral
      
dataset_prepared_path:
hub_model_id: kaist-ai/mpa-Mistral-7b-v0.2-hf-66k-dpo-5e-7
hub_strategy: checkpoint
# val_set_size: 0
output_dir: /mnt/nas/seongyun/axolotl/outputs/mpa_66k_dpo-5e-7

sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: mpa
wandb_entity: seongyun
wandb_watch:
wandb_name: mpa_mistral-7b-v0.2-hf-66k-dpo-5e-7
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
# evals_per_epoch: 4
eval_table_size:
# eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

```

</details><br>

# mpa-Mistral-7b-v0.2-hf-66k-dpo-5e-7

This model is a fine-tuned version of [kaist-ai/mpa-Mistral-7b-v0.2-hf-sft-66k](https://huggingface.co/kaist-ai/mpa-Mistral-7b-v0.2-hf-sft-66k) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 8143

### Training results



### Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.15.0