|
|
#include <algorithm> |
|
|
|
|
|
#include "conv2d-transpose.cuh" |
|
|
#include "ggml.h" |
|
|
|
|
|
__global__ void conv2d_transpose_kernel(const float * __restrict__ input, const half * __restrict__ kernel, |
|
|
float * __restrict__ output, const int in_w, const int in_h, const int out_w, |
|
|
const int out_h, const int kernel_w, const int kernel_h, const int stride, |
|
|
const int c_in, const int c_out, const int batches) { |
|
|
const int global_idx = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
|
|
const int total_elements = out_w * out_h * c_out * batches; |
|
|
|
|
|
if (global_idx >= total_elements) { |
|
|
return; |
|
|
} |
|
|
|
|
|
const int out_x_idx = global_idx % out_w; |
|
|
const int out_y_idx = (global_idx / out_w) % out_h; |
|
|
const int c_idx = (global_idx / (out_w * out_h)) % c_out; |
|
|
const int n_idx = global_idx / (out_w * out_h * c_out); |
|
|
|
|
|
float accumulator = 0; |
|
|
|
|
|
|
|
|
for (int c_in_idx = 0; c_in_idx < c_in; c_in_idx++) { |
|
|
for (int kh = 0; kh < kernel_h; ++kh) { |
|
|
int in_y = out_y_idx - kh; |
|
|
if (in_y < 0 || in_y % stride) continue; |
|
|
in_y /= stride; |
|
|
if (in_y >= in_h) continue; |
|
|
|
|
|
for (int kw = 0; kw < kernel_w; ++kw) { |
|
|
int in_x = out_x_idx - kw; |
|
|
if (in_x < 0 || in_x % stride) continue; |
|
|
in_x /= stride; |
|
|
if (in_x >= in_w) continue; |
|
|
|
|
|
const int input_idx = (in_w * in_h * c_in) * n_idx + (in_w * in_h) * c_in_idx + (in_w) *in_y + in_x; |
|
|
const int kernel_idx = |
|
|
(kernel_h * kernel_w * c_out) * c_in_idx + (kernel_h * kernel_w) * c_idx + (kernel_w) *kh + kw; |
|
|
|
|
|
float input_val = input[input_idx]; |
|
|
half kern_val = kernel[kernel_idx]; |
|
|
|
|
|
accumulator += input_val * (float) kern_val; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
output[(out_w * out_h * c_out) * n_idx + (out_w * out_h) * c_idx + (out_w) *out_y_idx + out_x_idx] = accumulator; |
|
|
} |
|
|
|
|
|
|
|
|
void ggml_cuda_conv_2d_transpose_p0(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
|
|
const ggml_tensor * kernel = dst->src[0]; |
|
|
const ggml_tensor * input = dst->src[1]; |
|
|
|
|
|
GGML_ASSERT(kernel->type == GGML_TYPE_F16 && input->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); |
|
|
|
|
|
const float * input_data = (const float *) input->data; |
|
|
float * output_data = (float *) dst->data; |
|
|
const half * kernel_data = (const half *) kernel->data; |
|
|
|
|
|
const int input_w = input->ne[0]; |
|
|
const int input_h = input->ne[1]; |
|
|
const int output_w = dst->ne[0]; |
|
|
const int output_h = dst->ne[1]; |
|
|
const int channels_in = input->ne[2]; |
|
|
const int channels_out = kernel->ne[2]; |
|
|
const int kernel_w = kernel->ne[0]; |
|
|
const int kernel_h = kernel->ne[1]; |
|
|
const int stride = dst->op_params[0]; |
|
|
const int batches = input->ne[3]; |
|
|
|
|
|
GGML_ASSERT(channels_in == kernel->ne[3]); |
|
|
GGML_ASSERT(stride > 0); |
|
|
|
|
|
cudaStream_t st = ctx.stream(); |
|
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(input)); |
|
|
GGML_ASSERT(ggml_is_contiguous(kernel)); |
|
|
GGML_ASSERT(ggml_is_contiguous(dst)); |
|
|
|
|
|
const int total = (output_w * output_h * channels_out * batches); |
|
|
const int blocks = (total + CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE - 1) / CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE; |
|
|
|
|
|
conv2d_transpose_kernel<<<blocks, CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE, 0, st>>>( |
|
|
input_data, kernel_data, output_data, input_w, input_h, output_w, output_h, kernel_w, kernel_h, stride, |
|
|
channels_in, channels_out, batches); |
|
|
} |
|
|
|