/** | |
* Copyright (c) 2023-2024 The ggml authors | |
* | |
* Permission is hereby granted, free of charge, to any person obtaining a copy | |
* of this software and associated documentation files (the "Software"), to | |
* deal in the Software without restriction, including without limitation the | |
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or | |
* sell copies of the Software, and to permit persons to whom the Software is | |
* furnished to do so, subject to the following conditions: | |
* | |
* The above copyright notice and this permission notice shall be included in | |
* all copies or substantial portions of the Software. | |
* | |
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | |
* IN THE SOFTWARE. | |
*/ | |
/** | |
* @brief Repeats a ggml tensor along each dimension to match the dimensions | |
* of another tensor. | |
* | |
* @details This function repeats the elements of a source ggml tensor along | |
* each dimension to create a destination tensor with the specified | |
* dimensions. The operation is performed using the ACL backend and | |
* executed asynchronously on the device. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The ggml tensor representing the destination, which op is | |
* GGML_OP_REPEAT and specifies the desired dimensions. | |
*/ | |
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Applies the Leaky ReLU activation function to a tensor using the CANN | |
* backend. | |
* | |
* @details This function computes the Leaky ReLU activation for each element of | |
* the input tensor. The Leaky ReLU function allows a small gradient | |
* when the unit is not active (i.e., when the input is negative). The | |
* Leaky ReLU function is defined as: | |
* \f[ | |
* \text{dst} = \max(0, src) + \text{negativeSlope} \cdot \min(0, | |
* src) | |
* \f] | |
* `negativeSlope` is in dst->params. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the result of the Leaky ReLU | |
* activation is stored, which op is `GGML_OP_LEAKY_RELU` | |
*/ | |
void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Concatenates multiple tensors along a specified dimension using the | |
* CANN backend. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param tensorList A pointer to the list of tensors to be concatenated. | |
* @param dst The destination tensor where the result of the | |
* concatenation is stored. dst->op is `GGML_OP_CONCAT`. | |
* @param concat_dim The dimension along which the tensors are concatenated. | |
* | |
* @attention tensorList length should be 2 and the dimension using for concat | |
* default to 1. | |
*/ | |
void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Generates a sequence of evenly spaced values within a specified | |
* interval for a ggml tensor using the CANN backend. | |
* | |
* @details This function creates a sequence of numbers over a specified i | |
* nterval, starting from `start`, ending before `stop`, and | |
* incrementing by `step`. The sequence is stored in the destination | |
* tensor `dst`. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the generated sequence will be stored. | |
* `start`, 'stop' and 'step' are in dst->op_params and dst->op is | |
* `GGML_OP_ARANGE`. | |
*/ | |
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Applies a clamp operation to the elements of a ggml tensor using the | |
* CANN backend. | |
* | |
* @details This function clamps the elements of the input tensor `src` to a | |
* specified range defined by `min` and `max` values. The result is | |
* stored in the destination tensor `dst`. The operation is defined as: | |
* \f[ | |
* y = \max(\min(x, max\_value), min\_value) | |
* \f] | |
* where `x` is an element of the input tensor, and `y` is the | |
* corresponding element in the output tensor. | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the clamped values will be stored. | |
* dst->op is `GGML_OP_CLAMP`, `min` and `max` value is in dst->params. | |
*/ | |
void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Scales the elements of a ggml tensor by a constant factor using the | |
* CANN backend. | |
* | |
* @details This function multiplies each element of the input tensor `src` by | |
* a scaling factor `scale`, storing the result in the destination | |
* tensor `dst`. The operation is defined as: | |
* \f[ | |
* dst = src \times scale | |
* \f] | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the scaled values will be stored. | |
* dst->op is `GGML_OP_SCALE` and `scale` value is in dst->params. | |
*/ | |
void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Sorts the elements of a ggml tensor and returns the indices that | |
* would sort the tensor using the CANN backend. | |
* | |
* @details This function performs an argsort operation on the input tensor | |
* `src`. It sorts the elements of `src` in either ascending or | |
* descending order, depending on the `GGML_SORT_ORDER_DESC`, | |
* and returns the indices that would sort the original tensor. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the sorted indices will be stored. | |
* dst->op is `GGML_OP_ARGSORT`. | |
*/ | |
void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the Layer Normalization for a ggml tensor using the CANN | |
* backend. | |
* | |
* @details This function applies the Layer Normalization operation on the | |
* input tensor `src` and stores the result in the destination tensor | |
* `dst`. Layer Normalization normalizes the features at each sample in | |
* a mini-batch independently. It is commonly used in neural networks | |
* to normalize the activations of a layer by adjusting and scaling | |
* the outputs. | |
* The operation is defined as: | |
* \f[ | |
* \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}} | |
* \f] | |
* `Var` defaults dst->ne[0]. `eps` is in dst->params. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the normalized values will be stored. | |
* @attention `Var` defaults to dst->ne[0]. | |
*/ | |
void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the Group Normalization for a ggml tensor using the CANN | |
* backend. | |
* | |
* @brief This function applies the Group Normalization operation on the input | |
* tensor `src` and stores the result in the destination tensor `dst`. | |
* Group Normalization divides the channels into groups and normalizes | |
* the features within each group across spatial locations. | |
* It is commonly used in convolutional neural networks to improve | |
* training stability and performance. | |
* The operation is defined as: | |
* \f[ | |
* \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}} | |
* \f] | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the normalized values will be stored. | |
* `n_groups` is in dst->params, which split C channel to `n_groups`. | |
* dst->op is `GGML_OP_GROUP_NORM`. | |
* | |
* @attention eps defaults to 1e-6f. | |
*/ | |
void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the accumulation of tensors using the CANN backend. | |
* | |
* @details This function performs an accumulation operation on two tensors. | |
* Depending on the `inplace` flag, it either updates the destination | |
* tensor `dst` in place by adding `alpha * src1` to it, or it creates | |
* a new tensor as the result of `src0 + alpha * src1` and stores it in | |
* `dst`. | |
* The operation is defined as: | |
* \f[ | |
* dst = src0 + alpha \times src1 | |
* \f] | |
* if `inplace` is `true`, `src0` is equal to 'dst'. | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the accumulated values will be stored. | |
* `inplace` is in dst->params, and dst->op is `GGML_OP_ACC`. | |
*/ | |
void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the sum of elements along the last dimension of a ggml tensor | |
* using the CANN backend. | |
* | |
* @details This function performs a reduction sum operation along the last | |
* dimension of the input tensor `src`. The result of the sum is stored | |
* in the destination tensor `dst`. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the reduced values will be stored。 | |
* dst->op is `GGML_OP_SUM_ROWS`. | |
* | |
* @attention `reduce_dims` defaults to 3, which means the last dimension. | |
*/ | |
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the sum of elements in a ggml tensor. | |
* | |
* @details This function performs a reduction sum operation along the last | |
* dimension of the input tensor `src`. The result of the sum is stored | |
* in the destination tensor `dst`. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the reduced values will be stored。 | |
* | |
*/ | |
void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Upsamples a ggml tensor using nearest neighbor interpolation using | |
* the CANN backend. | |
* | |
* @details This function performs upsampling of the input tensor `src` using | |
* nearest neighbor interpolation. The upsampling is applied to the | |
* height and width dimensions (last two dimensions) of the tensor. The | |
* result is stored in the destination tensor `dst`, which must have | |
* the appropriate dimensions for the upsampled output. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the upsampled values will be stored. | |
* dst->op is `GGML_OP_UPSCALE`. | |
*/ | |
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx, | |
ggml_tensor* dst); | |
/** | |
* @brief Pads a ggml tensor to match the dimensions of the destination tensor | |
* using the CANN backend. | |
* | |
* @details This function pads the input tensor `src` so that it matches the | |
* dimensions of the destination tensor `dst`. The amount of padding | |
* is calculated based on the difference in sizes between `src` and | |
* `dst` along each dimension. The padded tensor is stored in `dst`. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor, which specifies the target dimensions for | |
* padding. dst->op is `GGML_OP_PAD`. | |
*/ | |
void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Executes a 2D pooling operation on a ggml tensor using the CANN | |
* backend. | |
* | |
* @details This function dispatches the execution of a 2D pooling operation on | |
* the input tensor `dst`. The type of pooling (average or max) is | |
* determined by the `op` parameter, which is read from the operation | |
* parameters of `dst`. The function supports average pooling | |
* (`GGML_OP_POOL_AVG`) and max pooling (`GGML_OP_POOL_MAX`). If an | |
* invalid operation is encountered, the function asserts a failure. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor on which the pooling operation is to be | |
* performed. dst->op is `GGML_OP_POOL_2D`. | |
*/ | |
void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Duplicates a ggml tensor using the CANN backend. | |
* | |
* @details This function duplicates the contents of the source tensor `src` to | |
* the destination tensor `dst`. The function supports various tensor | |
* types and configurations, including handling of extra data, type | |
* conversions, and special cases for contiguous and non-contiguous | |
* tensors. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the duplicated data will be stored. | |
* dst->op is `GGML_OP_DUP` | |
* | |
* @attention Only support Fp16/FP32. Not support when src and dst have | |
* different shape and dst is no-contiguous. | |
* @note: This func need to simplify. | |
*/ | |
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the Root Mean Square (RMS) normalization of a ggml tensor | |
* using the CANN backend. | |
* | |
* @details This function applies RMS normalization to the input tensor `src` | |
* and stores the result in the destination tensor `dst`. RMS | |
* normalization involves computing the root mean square of the input | |
* tensor along a specified dimension and then dividing each element of | |
* the tensor by this value, adjusted by a small epsilon value to | |
* prevent division by zero. | |
* The operation is defined as: | |
* \f[ | |
* \text{RmsNorm}\left(x_i\right)=\frac{x_i}{\text{Rms}(\mathbf{x})} g_i, | |
* \quad \text { where } \text{Rms}(\mathbf{x})=\sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2+e p s} | |
* \f] | |
* `eps` is in dst->op_params. | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the normalized values will be stored. | |
* dst->op is `GGML_OP_RMS_NORM`. | |
*/ | |
void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Applies a diagonal mask to the tensor with a specified value. | |
* | |
* @details This function creates a mask tensor filled with ones, then applies | |
* an upper triangular and lower triangular operation to it based on | |
* the number of past elements specified. Afterward, it adds the masked | |
* tensor to the destination tensor in-place. | |
* | |
* @param ctx The backend CANN context used for operations. | |
* @param dst The destination tensor where the result will be stored. dst->op is | |
* `GGML_OP_DIAG_MASK` | |
* @param value The value to use for masking. | |
*/ | |
void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value); | |
/** | |
* @brief Performs an image-to-column transformation on the input tensor. | |
* | |
* @details This function takes an input tensor and applies an image-to-column | |
* operation, converting spatial dimensions into column-like | |
* structures suitable for convolutional operations. It supports both | |
* half-precision (F16) and single-precision (F32) floating-point data | |
* types. | |
* | |
* @param ctx The backend CANN context for executing operations. | |
* @param dst The destination tensor that stores the result of the operation. | |
* dst->op is `GGML_OP_IM2COL`. | |
*/ | |
void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes time step embeddings using sine and cosine functions. | |
* | |
* @details This function calculates time step embeddings by applying sine and | |
* cosine transformations to a given input tensor, which is typically | |
* used in temporal models like diffusion models or transformers to | |
* encode time information effectively. | |
* | |
* @param ctx The backend CANN context for executing operations. | |
* @param dst The destination tensor where the result of the embedding operation | |
* will be stored. dst->op is `GGML_OP_TIMESTEP_EMBEDDING`. | |
*/ | |
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
// @see ggml_cann_dup. | |
void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the softmax activation with optional masking. | |
* | |
* @details This function computes the softmax activation over the input tensor, | |
* optionally applying a mask and scaling factor. It supports both FP16 | |
* and FP32 data types and can handle masking by broadcasting the mask | |
* across rows if necessary. | |
* The function performs the following steps: | |
* 1. Multiplies the input tensor by a scale factor. | |
* 2. Optionally casts the mask tensor to FP32 if it is in FP16 format. | |
* 3. Broadcasts the mask tensor if its dimensions do not match the | |
* input tensor's dimensions. | |
* 4. Adds the mask to the scaled input tensor. | |
* 5. Applies the softmax activation function along the specified | |
* dimension. | |
* | |
* @param ctx The backend CANN context for executing operations. | |
* @param dst The destination tensor where the result will be stored. dst->op is | |
* `GGML_OP_SOFTMAX`. | |
*/ | |
void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Extracts specific rows from a tensor based on indices. | |
* | |
* @details This function retrieves rows from a source tensor src0 according to | |
* the indices provided in another tensor src1 and stores the result in | |
* a destination tensor (\p dst). It supports different data types | |
* including F32, F16, Q4_0, and Q8_0. | |
* | |
* @param ctx The backend CANN context for executing operations. | |
* @param dst The destination tensor where the extracted rows will be stored. | |
* dst->op is `GGML_OP_GET_ROWS`. | |
*/ | |
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Executes matrix multiplication for the given tensor. | |
* | |
* @details This function performs matrix multiplication on the source tensors | |
* associated with the destination tensor. It supports matrix | |
* multiplication F32, F16, and Q8_0. | |
* | |
* @param ctx The backend CANN context for executing operations. | |
* @param dst The destination tensor for storing the result of the matrix | |
* multiplication. dst->op is `GGML_OP_MUL_MAT`. | |
*/ | |
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Applies Rotary Positional Embedding (RoPE) to the input tensor. | |
* | |
* @details This function implements the RoPE mechanism, which is a method to | |
* encode positional information into sequence data, particularly | |
* useful in transformer models. It supports both F32 and F16 data | |
* types. | |
* | |
* @param ctx The backend CANN context for executing operations. | |
* @param dst The destination tensor where the RoPE-transformed data will be | |
* stored. dst->op is `GGML_OP_ROPE`. | |
* | |
* @note The function currently does not support cases where the n_dims is less | |
* than the input tensor's first dimension. | |
* @note The function currently does not support cases where the freq_factors is | |
* not NULL. | |
* @note The function currently does not support cases where the ext_factor is | |
* not equal 0. | |
* @note The function currently does not support cases where the freq_scale is | |
* not equal 1. | |
*/ | |
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the index of the maximum value along the specified dimension | |
* of a ggml tensor using the CANN backend. | |
* | |
* @details This function performs an argmax operation on the input tensor. | |
* It finds the index of the maximum value along the specified axis | |
* and stores these indices in the destination tensor `dst`. The | |
* operation is executed using the CANN backend for optimized performance. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the indices of the maximum values will | |
* be stored. dst->op is `GGML_OP_ARGMAX`. | |
*/ | |
void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Adds two tensors element-wise and stores the result in a destination | |
* tensor. | |
* | |
* This function performs the operation: | |
* \f[ | |
* dst = acl\_src0 + alpha \times acl\_src1 | |
* \f] | |
* where alpha is a scalar value and defaults to 1.0f. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src0 The first source tensor. | |
* @param acl_src1 The second source tensor. | |
* @param acl_dst The destination tensor where the result will be stored. | |
*/ | |
void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0, | |
aclTensor* acl_src1, aclTensor* acl_dst = nullptr); | |
/** | |
* @brief Sub two tensors element-wise and stores the result in a destination | |
* tensor. | |
* | |
* This function performs the operation: | |
* \f[ | |
* dst = acl\_src0 - alpha \times acl\_src1 | |
* \f] | |
* where alpha is a scalar value and defaults to 1.0f. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src0 The first source tensor. | |
* @param acl_src1 The second source tensor. | |
* @param acl_dst The destination tensor where the result will be stored. | |
*/ | |
void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0, | |
aclTensor* acl_src1, aclTensor* acl_dst = nullptr); | |
/** | |
* @brief Performs element-wise multiplication of two tensors and stores the | |
* result in a destination tensor. | |
* | |
* This function performs element-wise multiplication of the tensors `acl_src` | |
* and `acl_other` and stores the result in the destination tensor `acl_dst`. | |
* The operation is defined as: | |
* \f[ | |
* \text {acl_dst }_i=\text {acl_src }_i \times \text {acl_other }_i | |
* \f] | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The first tensor for element-wise multiplication. | |
* @param acl_other The second tensor for element-wise multiplication. | |
* @param acl_dst The destination tensor where the result will be stored. | |
*/ | |
void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_other, aclTensor* acl_dst = nullptr); | |
/** | |
* @brief Matrix division, optionally in-place. | |
* | |
* This function division each element of the source tensor `acl_src` by the | |
* tensor `acl_other` and stores the result in the destination tensor `acl_dst`. | |
* If `inplace` is true, `acl_dst` will not be used and the operation is | |
* performed in-place on `acl_src`. The operation is defined as: \f[ | |
* \text{dst}_i = \frac{\text{acl_src}_i}{\text{acl_other}_i} | |
* \f] | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src Numerator tensor.. | |
* @param acl_other Denominator tensor. | |
* @param acl_dst The destination tensor where the result will be stored if | |
* `inplace` is false. | |
* @param inplace Flag indicating whether to perform the operation in-place on | |
* `acl_src`. | |
*/ | |
void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_other, aclTensor* acl_dst = nullptr); | |
/** | |
* @brief Applies element-wise cosine function to the elements of a tensor. | |
* | |
* This function computes the cosine of each element in the source tensor | |
* `acl_src` and stores the result in the destination tensor `acl_dst`. The | |
* operation is defined as: \f[ \text {acl_dst }_i=\cos \left(\text {acl_src | |
* }_i\right) \f] | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor on which the cosine function will be | |
* applied. | |
* @param acl_dst The destination tensor where the cosine results will be | |
* stored. | |
*/ | |
void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_dst); | |
/** | |
* @brief Applies element-wise sine function to the elements of a tensor. | |
* | |
* This function computes the sine of each element in the source tensor | |
`acl_src` | |
* and stores the result in the destination tensor `acl_dst`. | |
* The operation is defined as: | |
* \f[ | |
* \text {acl_dst }_i=\sin \left(\text {acl_src }_i\right) | |
* \f] | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor on which the sine function will be applied. | |
* @param acl_dst The destination tensor where the sine results will be stored. | |
*/ | |
void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_dst); | |
/** | |
* @brief Prepares broadcast-compatible ACL tensors for two input tensors and one | |
* output tensor. | |
* | |
* This function checks whether broadcasting is needed between `src0` and `src1`. | |
* If broadcasting is required, it calculates the proper shapes and creates | |
* ACL tensors with broadcast parameters. Otherwise, it directly creates ACL tensors | |
* based on the original tensor shapes. | |
* | |
* @param src0 The first input tensor (reference shape). | |
* @param src1 The second input tensor (possibly broadcasted). | |
* @param dst The destination/output tensor. | |
* @param acl_src0 Output pointer to the created ACL tensor corresponding to src0. | |
* @param acl_src1 Output pointer to the created ACL tensor corresponding to src1. | |
* @param acl_dst Output pointer to the created ACL tensor corresponding to dst. | |
*/ | |
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, | |
aclTensor ** acl_src0, aclTensor ** acl_src1, aclTensor ** acl_dst); | |
/** | |
* @brief Computes the 1D transposed convolution (deconvolution) of a ggml | |
* tensor using the CANN backend. | |
* | |
* @details This function performs a 1D transposed convolution (also known as | |
* deconvolution) operation on the input tensor. The computed result is stored | |
* in the destination tensor `dst`. The operation is optimized using the CANN | |
* backend for improved performance. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the transposed convolution result | |
* will be stored. dst->op is `GGML_OP_CONV_TRANSPOSE_1D`. | |
*/ | |
void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Applies the ELU (Exponential Linear Unit) activation to a ggml tensor | |
* using the CANN backend. | |
* | |
* @details This function performs an element-wise ELU activation on the input | |
* tensor. | |
* The result is written to the destination tensor `dst` in-place. | |
* The ELU function is defined as: | |
* | |
* \text{ELU}(x) = | |
* \begin{cases} | |
* x, & \text{if } x > 0 \\ | |
* \alpha \left( \exp(x) - 1 \right), & \text{if } x \leq 0 | |
* \end{cases} | |
* | |
* where α (alpha) is a hyperparameter, typically set to 1.0. | |
* This operation is optimized using the CANN backend for high-performance | |
* inference or training. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the ELU-activated result will be stored. | |
* dst->op is expected to be `GGML_OP_ELU`. | |
*/ | |
void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Computes the mean of a ggml tensor element-wise using the CANN backend. | |
* | |
* @details This function calculates the element-wise mean of the input tensor. | |
* The result is written to the destination tensor `dst`. | |
* The mean is computed by averaging the values across the entire tensor. | |
* | |
* This operation is optimized using the CANN backend for high-performance inference or training. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the mean result will be stored. | |
* dst->op is expected to be `GGML_OP_MEAN`. | |
*/ | |
void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Applies 1D reflect padding to a ggml tensor using the CANN backend. | |
* | |
* @details This function performs 1D reflect padding on the input tensor. | |
* The amount of padding on each side is specified by parameters stored in `dst->op_params`. | |
* The operation reflects the values at the borders of the tensor to generate the padded output. | |
* | |
* This operation is optimized using the CANN backend for high-performance inference or training. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the padded result will be stored. | |
* dst->op is expected to be `GGML_OP_PAD_REFLECT_1D`. | |
*/ | |
void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Counts the number of equal elements in two ggml tensors using the CANN backend. | |
* | |
* @details This function performs an element-wise comparison between two input tensors, | |
* and counts the number of positions where the elements are equal. The result is | |
* stored in the destination tensor `dst` as a scalar. | |
* | |
* The operation is optimized using the CANN backend, making it suitable for | |
* high-performance inference or training scenarios. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the result will be stored. | |
* dst->op is expected to be `GGML_OP_COUNT_EQUAL`. | |
*/ | |
void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Applies the Step activation function to a ggml tensor using the CANN backend. | |
* | |
* @details This function applies a step function element-wise to the input tensor, where | |
* each element is transformed to 1.0 if it is greater than 0, and 0.0 otherwise. | |
* The result is stored in the destination tensor `dst`. | |
* | |
* This operation is accelerated using the CANN backend to improve runtime performance. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the result will be stored. | |
* dst->op is expected to be `GGML_OP_STEP`. | |
*/ | |
void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Performs the Flash Attention extended operator using the CANN backend. | |
* | |
* @details This function implements the memory-efficient Flash Attention algorithm | |
* for computing scaled dot-product attention with hardware acceleration. | |
* The result is stored in the destination tensor `dst`. | |
* | |
* This operation is accelerated using the CANN backend to improve runtime performance. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the result will be stored. | |
* dst->op is expected to be `GGML_OP_FLASH_ATTN_EXT`. | |
*/ | |
void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/* | |
* @brief A generic wrapper for ACL resources with custom deleter support. | |
*/ | |
using any_acl_resource = std::unique_ptr<void, std::function<void(void*)>>; | |
/** | |
* @brief Trait structure used to define how to destroy a given ACL resource type. | |
* | |
* @tparam T ACL resource type. | |
*/ | |
template<typename T> | |
struct acl_resource_traits; | |
/** | |
* @brief Specialization for aclTensor, defines how to destroy an aclTensor resource. | |
*/ | |
template<> | |
struct acl_resource_traits<aclTensor> { | |
static void destroy(void* p) { | |
ACL_CHECK(aclDestroyTensor(static_cast<aclTensor*>(p))); | |
} | |
}; | |
/** | |
* @brief Specialization for aclIntArray, defines how to destroy an aclIntArray resource. | |
*/ | |
template<> | |
struct acl_resource_traits<aclIntArray> { | |
static void destroy(void* p) { | |
ACL_CHECK(aclDestroyIntArray(static_cast<aclIntArray*>(p))); | |
} | |
}; | |
/** | |
* @brief Specialization for aclScalar, defines how to destroy an aclScalar resource. | |
*/ | |
template<> | |
struct acl_resource_traits<aclScalar> { | |
static void destroy(void* p) { | |
ACL_CHECK(aclDestroyScalar(static_cast<aclScalar*>(p))); | |
} | |
}; | |
/** | |
* @brief Specialization for aclTensorList, defines how to destroy an aclTensorList resource. | |
*/ | |
template<> | |
struct acl_resource_traits<aclTensorList> { | |
static void destroy(void* p) { | |
ACL_CHECK(aclDestroyTensorList(static_cast<aclTensorList*>(p))); | |
} | |
}; | |
/** | |
* @brief Creates a generic ACL resource wrapper with proper destruction logic. | |
* | |
* @tparam T ACL resource type. | |
* @param ptr Raw pointer to ACL resource. | |
* @return any_acl_resource Smart pointer that handles destruction. | |
*/ | |
template<typename T> | |
any_acl_resource make_acl_resource(T* ptr) { | |
return any_acl_resource( | |
static_cast<void*>(ptr), | |
[](void* p) { | |
acl_resource_traits<T>::destroy(p); | |
} | |
); | |
} | |
/** | |
* @brief Registers multiple ACL resources into a vector for lifetime management. | |
* | |
* @tparam Args Variadic list of ACL resource types. | |
* @param vec Target vector to hold ACL resources. | |
* @param args Raw pointers to ACL resources. | |
*/ | |
template<typename... Args> | |
void register_acl_resources(std::vector<any_acl_resource>& vec, Args*... args) { | |
(vec.emplace_back(make_acl_resource(args)), ...); | |
} | |
/** | |
* @brief Task class that wraps the execution of an aclnn function call. | |
*/ | |
class aclnn_task : public cann_task { | |
public: | |
aclnn_task(aclnn_func_t aclnn_func, void * workspace_addr, | |
uint64_t workspace_size, aclOpExecutor * executor, | |
aclrtStream stream) : | |
aclnn_func_(aclnn_func), | |
workspace_addr_(workspace_addr), | |
workspace_size_(workspace_size), | |
executor_(executor), | |
stream_(stream) {} | |
virtual void run_task() override { | |
ACL_CHECK(aclnn_func_(workspace_addr_, workspace_size_, executor_, stream_)); | |
} | |
private: | |
aclnn_func_t aclnn_func_; | |
void * workspace_addr_; | |
uint64_t workspace_size_; | |
aclOpExecutor * executor_; | |
aclrtStream stream_; | |
}; | |
/** | |
* @brief Task class that releases ACL resources after usage. | |
*/ | |
class release_resource_task : public cann_task { | |
public: | |
release_resource_task(std::vector<any_acl_resource>&& resources){ | |
resource_ = std::move(resources); | |
} | |
virtual void run_task() override { | |
resource_.clear(); | |
} | |
private: | |
std::vector<any_acl_resource> resource_; | |
}; | |
/** | |
* @brief Task class for performing asynchronous memory copy operations. | |
*/ | |
class async_memcpy_task : public cann_task { | |
public: | |
async_memcpy_task(void* dst, const void* src, size_t size, | |
aclrtMemcpyKind kind, aclrtStream stream) | |
: dst_(dst), src_(src), size_(size), kind_(kind), stream_(stream) {} | |
virtual void run_task() override { | |
ACL_CHECK(aclrtMemcpyAsync(dst_, size_, src_, size_, kind_, stream_)); | |
} | |
private: | |
void* dst_; | |
const void* src_; | |
size_t size_; | |
aclrtMemcpyKind kind_; | |
aclrtStream stream_; | |
}; | |
/** | |
* @brief Task class for performing asynchronous memory set operations. | |
*/ | |
class async_memset_task : public cann_task { | |
public: | |
async_memset_task(void* buffer, size_t size, int32_t value, aclrtStream stream) | |
: buffer_(buffer), size_(size), value_(value), stream_(stream) {} | |
virtual void run_task() override { | |
ACL_CHECK(aclrtMemsetAsync(buffer_, size_, value_, size_, stream_)); | |
} | |
private: | |
void* buffer_; | |
size_t size_; | |
int32_t value_; | |
aclrtStream stream_; | |
}; | |
/** | |
* @brief Launches an asynchronous task using the memory allocator. | |
* | |
* This macro submit an asynchronous task on the specified stream. | |
* The task uses memory allocated by the allocator. It is guaranteed | |
* that the memory will not be accessed by other tasks until this task | |
* completes, due to the sequential execution order within the same stream. | |
* | |
* @param OP_NAME aclnn operator name. | |
* @param args Additional arguments required by the task. | |
* | |
* @note | |
* Memory from the allocator will be "freed" immediately and can be | |
* reallocated to other pointers. However, it won't be accessed by any | |
* other task before this asynchronous task ends, because all tasks in the | |
* same stream are executed in queue order. | |
*/ | |
/** | |
* @brief Registers and releases multiple ACL resources, optionally deferring the release | |
* using a task. | |
* | |
* @tparam Args Types of the ACL resources. | |
* @param ctx Backend context which manages task submission and async mode. | |
* @param args Pointers to ACL resources to be released. | |
*/ | |
template <typename... Args> | |
void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... args) { | |
std::vector<any_acl_resource> resources; | |
register_acl_resources(resources, std::forward<Args>(args)...); | |
if(ctx.async_mode) { | |
auto task = std::make_unique<release_resource_task>(std::move(resources)); | |
ctx.task_queue.submit_task(std::move(task)); | |
} | |
} | |
/** | |
* @brief Performs an asynchronous memory copy operation, optionally deferred via task submission. | |
* | |
* @param ctx Backend context containing stream and async configuration. | |
* @param dst Destination memory address. | |
* @param src Source memory address. | |
* @param len Size of memory to copy (in bytes). | |
* @param kind Type of memory copy (host-to-device, device-to-host, etc). | |
*/ | |
inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx, void * dst, | |
const void * src, size_t len, aclrtMemcpyKind kind) { | |
if (ctx.async_mode) { | |
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx.stream()); | |
ctx.task_queue.submit_task(std::move(task)); | |
} else { | |
ACL_CHECK(aclrtMemcpyAsync(dst, len, src, len, kind, ctx.stream())); | |
} | |
} | |
inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx, void * dst, | |
const void * src, size_t len, aclrtMemcpyKind kind) { | |
if (ctx->async_mode) { | |
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx->stream()); | |
ctx->task_queue.submit_task(std::move(task)); | |
} else { | |
ACL_CHECK(aclrtMemcpyAsync(dst, len, src, len, kind, ctx->stream())); | |
} | |
} | |
/** | |
* @brief Performs an asynchronous memory set operation, optionally deferred via task submission. | |
* | |
* @param ctx Backend context containing stream and async configuration. | |
* @param buffer Memory buffer to be set. | |
* @param size Size of the memory buffer (in bytes). | |
* @param value Value to set in the buffer. | |
*/ | |
inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffer, | |
size_t size, int value) { | |
if (ctx.async_mode) { | |
auto task = std::make_unique<async_memset_task>(buffer, size, value, ctx.stream()); | |
ctx.task_queue.submit_task(std::move(task)); | |
} else { | |
ACL_CHECK(aclrtMemsetAsync(buffer, size, value, size, ctx.stream())); | |
} | |
} | |
/** | |
* @brief Performs sparse expert-based matrix multiplication using the CANN backend. | |
* | |
* @details This function implements a MoE-style batched matrix multiplication, where each input token | |
* is routed to one or more experts, and each expert corresponds to a specific [D, M] weight matrix | |
* in the source tensor `src0`. The routing indices are provided via the `ids` tensor. | |
* | |
* For each token (from `src1`), the function selects the corresponding expert(s) as specified by `ids`, | |
* performs the matrix multiplication with the selected expert's weight submatrix (from `src0`), | |
* and stores the results in `dst`. This operation is optimized and executed on the CANN backend. | |
* | |
* Dimensions: | |
* - src0: [D, M, A, 1], where A is the number of experts | |
* - src1: [D, B, N, 1], where N is batch size and B is the slot count per sample | |
* - ids : [K, N], where K is the number of experts each token is routed to | |
* - dst : [M, K, N, 1], output tensor storing the result of expert × token multiplication | |
* | |
* The function handles two main modes: | |
* - If `ne12 == 1`, a simpler per-token loop is used. | |
* - TODO: If `ne12 > 1`, grouped multiplication and memory copying is used for efficiency. | |
* | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the expert-weighted token outputs are stored. | |
* Expected to be of shape [M, K, N, 1]. | |
*/ | |
void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Applies a element-wise operation to two input tensors using the CANN | |
* backend. | |
* | |
* This templated function takes a binary operator and applies it to two source | |
* tensors | |
* associated with the destination tensor. The function handles broadcasting as | |
* needed. | |
* | |
* @tparam binary_op A callable object (e.g., lambda or function pointer) representing | |
* the binary operation to be performed. It must take three arguments: | |
* (ggml_backend_cann_context&, aclTensor*, aclTensor*, aclTensor*). | |
* | |
* @param ctx The CANN backend context used to manage execution and resources. | |
* @param dst The destination tensor. | |
*/ | |
template <auto binary_op> | |
void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src0 = dst->src[0]; | |
ggml_tensor* src1 = dst->src[1]; | |
aclTensor* acl_src0; | |
aclTensor* acl_src1; | |
aclTensor* acl_dst; | |
// Need bcast | |
bcast_shape(src0, src1, dst, &acl_src0, &acl_src1, &acl_dst); | |
binary_op(ctx, acl_src0, acl_src1, acl_dst); | |
ggml_cann_release_resources(ctx, acl_src0, acl_src1, acl_dst); | |
} | |
/** | |
* @brief Applies a unary operation to an input tensor using the CANN backend. | |
* | |
* This templated function applies a unary operator to the source tensor of `dst` | |
* and stores the result in the destination tensor. | |
* | |
* @tparam unary_op A callable with the signature: | |
* void(ggml_backend_cann_context&, aclTensor*, aclTensor*) | |
* where the first aclTensor is the source and the second is the destination. | |
* @param ctx The CANN backend context for managing resources and execution. | |
* @param dst The destination tensor. Its src[0] is treated as the input tensor. | |
*/ | |
template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)> | |
void ggml_cann_unary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
unary_op(ctx, acl_src, acl_dst); | |
ggml_cann_release_resources(ctx, acl_src, acl_dst); | |
} | |
/** | |
* @brief Applies a unary operation to a ggml tensor using the CANN backend. | |
* | |
* @details This function performs a unary operation on the input tensor using | |
* a user-provided lambda or callable object `unary_op`, which accepts the CANN | |
* context and two ACL tensors (source and destination). Internally, this function | |
* creates ACL representations of the ggml tensors and invokes the unary operation. | |
* The result is stored in the destination tensor `dst`. This utility abstracts the | |
* common boilerplate of tensor conversion and cleanup when implementing unary ops. | |
* | |
* @param unary_op A callable that performs the unary operation using CANN APIs. | |
* @param ctx The CANN context used for operations. | |
* @param dst The destination tensor where the result will be stored. | |
* The source tensor is retrieved from `dst->src[0]`. | |
*/ | |
void ggml_cann_unary_op( | |
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op, | |
ggml_backend_cann_context& ctx, ggml_tensor* dst); | |
/** | |
* @brief Helper macro to invoke a unary ACL operation using ggml_cann_unary_op. | |
* | |
* This macro defines an inline lambda wrapping a specific ACL operation name, | |
* and passes it to the templated ggml_cann_unary_op function. It simplifies | |
* calling unary ops by hiding the lambda boilerplate. | |
* | |
* Internally, the lambda will call: | |
* @code | |
* GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); | |
* @endcode | |
* | |
* @param OP_NAME The name of the ACL unary operator to invoke via GGML_CANN_CALL_ACLNN_OP. | |
* | |
* @see ggml_cann_unary_op | |
* @see GGML_CANN_CALL_ACLNN_OP | |
*/ | |