Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,128 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- kaifkhaan/roast
|
5 |
+
base_model:
|
6 |
+
- mistralai/Mistral-7B-Instruct-v0.1
|
7 |
+
tags:
|
8 |
+
- not-for-all-audiences
|
9 |
+
---
|
10 |
+
# Mistral Roast bot
|
11 |
+
|
12 |
+
Welcome to the Mistral Roastbot model repository! This model has been fine-tuned on custom Roast data and is designed to generate Uncensored Roasts in the context of any queries from the user.
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
- **Model Name**: Mistral Roast bot
|
17 |
+
- **Model Architecture**: [Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
18 |
+
- **Model Type**: Causal Language Model
|
19 |
+
- **Training Data**: Fine-tuned on a custom dataset of kaifkhaan/roast.
|
20 |
+
|
21 |
+
## Usage
|
22 |
+
|
23 |
+
### Installation
|
24 |
+
|
25 |
+
To use this model, you will need the `transformers` and `llama_cpp` libraries installed. You can install them using pip:
|
26 |
+
|
27 |
+
```bash
|
28 |
+
pip install transformers llama_cpp bitsandbytes accelerate
|
29 |
+
```
|
30 |
+
|
31 |
+
```bash
|
32 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig , pipeline
|
33 |
+
import torch
|
34 |
+
|
35 |
+
# Configuration for the nf4 quantization
|
36 |
+
nf4_config = BitsAndBytesConfig(
|
37 |
+
load_in_4bit=True,
|
38 |
+
bnb_4bit_quant_type="nf4",
|
39 |
+
bnb_4bit_use_double_quant=True,
|
40 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
# Load the fine-tuned model and tokenizer
|
46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
47 |
+
"kaifkhaan/Roast_Bot",
|
48 |
+
device_map='auto',
|
49 |
+
quantization_config=nf4_config,
|
50 |
+
use_cache=False
|
51 |
+
)
|
52 |
+
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained("kaifkhaan/Roast_Bot" )
|
54 |
+
|
55 |
+
# Ensure pad token and padding side are correctly set
|
56 |
+
tokenizer.pad_token = tokenizer.eos_token
|
57 |
+
tokenizer.padding_side = "right"
|
58 |
+
|
59 |
+
def generate_response(prompt, model, tokenizer):
|
60 |
+
# Add the custom instruction and format the prompt
|
61 |
+
#try giving different instruction as per your need and have fun !
|
62 |
+
instruction = "You are a chatbot that will roast the user while also using uncensored curse words and offensive statements while simultaneously answering his queries. Use the provided input and create a roast response also use as many curse words in the response as possible ."
|
63 |
+
full_prompt = f"<s>### Instruction:\n{instruction}\n\n### Input:\n{prompt}\n\n### Response:"
|
64 |
+
|
65 |
+
# Encode the prompt
|
66 |
+
encoded_input = tokenizer(full_prompt, return_tensors="pt", add_special_tokens=True)
|
67 |
+
model_inputs = encoded_input.to('cuda')
|
68 |
+
|
69 |
+
# Generate text from the model
|
70 |
+
generated_ids = model.generate(
|
71 |
+
**model_inputs,
|
72 |
+
max_new_tokens=350, # Adjust as needed
|
73 |
+
do_sample=True,
|
74 |
+
temperature=0.6, # Control randomness
|
75 |
+
top_k=50, # Limits sampling to top k tokens
|
76 |
+
top_p=0.95, # Nucleus sampling
|
77 |
+
pad_token_id=tokenizer.eos_token_id
|
78 |
+
)
|
79 |
+
|
80 |
+
# Decode the generated text
|
81 |
+
decoded_output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
82 |
+
|
83 |
+
# Extract the response part
|
84 |
+
response = decoded_output[0]
|
85 |
+
response = response.split("### Response:")[1].strip() if "### Response:" in response else response.strip()
|
86 |
+
|
87 |
+
return response
|
88 |
+
|
89 |
+
# Example prompt
|
90 |
+
|
91 |
+
|
92 |
+
prompt = "am i pretty ?"
|
93 |
+
|
94 |
+
# Generate the response
|
95 |
+
response = generate_response(prompt, model, tokenizer)
|
96 |
+
|
97 |
+
print(response)
|
98 |
+
```
|
99 |
+
|
100 |
+
```bash
|
101 |
+
response = "you look like a sack of sh*t with a face."
|
102 |
+
```
|
103 |
+
|
104 |
+
### Training
|
105 |
+
|
106 |
+
The model was fine-tuned on a custom dataset consisting of Roasts between user and the bot. The fine-tuning process involved training the model for 15 epochs using a batch size of 16 on a single GPU.
|
107 |
+
|
108 |
+
## Hyperparameters
|
109 |
+
- **Learning Rate**: 2e-4
|
110 |
+
- **Batch Size**: 16
|
111 |
+
- **Number of Epochs**: 15
|
112 |
+
- **Optimizer**: AdamW
|
113 |
+
|
114 |
+
|
115 |
+
### Limitations and Biases
|
116 |
+
|
117 |
+
- **Domain Specific**: The model is fine-tuned specifically for fun and roast purpose.
|
118 |
+
|
119 |
+
### Citation
|
120 |
+
```bibtex
|
121 |
+
@misc{mistral_Roastbot_2024,
|
122 |
+
author = {kaifkhaan},
|
123 |
+
title = {Mistral Roast Model},
|
124 |
+
year = {2024},
|
125 |
+
publisher = {Hugging Face},
|
126 |
+
url = {https://huggingface.co/kaifkhaan/Roast_Bot}
|
127 |
+
}
|
128 |
+
```
|