Trained for 4 epochs.
Usage:
image_processor = AutoImageProcessor.from_pretrained("microsoft/dit-large")
model = BeitForSemanticSegmentation.from_pretrained("jzju/dit-doclaynet")
image = Image.open('img.png').convert('RGB')
inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# logits are of shape (batch_size, num_labels, height, width)
logits = outputs.logits
out = logits[0].detach()
out.size()
for i in range(11):
plt.imshow(out[i])
plt.show()
Labels:
1: Caption
2: Footnote
3: Formula
4: List-item
5: Page-footer
6: Page-header
7: Picture
8: Section-header
9: Table
10: Text
11: Title
Data label convert:
model = BeitForSemanticSegmentation.from_pretrained("microsoft/dit-base", num_labels=11)
ds = load_dataset("ds4sd/DocLayNet-v1.1")
mask = np.zeros([11, 1025, 1025])
for b, c in zip(d["bboxes"], d["category_id"]):
b = [np.clip(int(bb), 0, 1025) for bb in b]
mask[c - 1][b[1]:b[1]+b[3], b[0]:b[0]+b[2]] = 1
mask = [cv2.resize(a, dsize=(56, 56), interpolation=cv2.INTER_AREA) for a in mask]
d["label"] = np.stack(mask)
- Downloads last month
- 3,974
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.