File size: 10,665 Bytes
c528172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315c544
 
c528172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch

from collections import deque
from jamotools import split_syllables, join_jamos
from transformers import PretrainedConfig, PreTrainedModel, AutoTokenizer

class HangulTokenizerConfig(PretrainedConfig):
    model_type = "hangul_tokenizer"
    
    def __init__(
        self,
        base_tokenizer_name='unsloth/gemma-2-2b',
        **kwargs
    ):
        super().__init__(**kwargs)
        self.base_tokenizer_name = base_tokenizer_name


class HangulTokenizer(PreTrainedModel):
    config_class = HangulTokenizerConfig
    
    def __init__(self, config):
        super().__init__(config)
        self.temp_module = torch.nn.Parameter(torch.ones(1))
        self.base_tokenizer = AutoTokenizer.from_pretrained(config.base_tokenizer_name)
        self.base_tokenizer.pad_token_id = 128
        self.base_tokenizer.pad_token = self.base_tokenizer.decode([self.base_tokenizer.pad_token_id])
        self.space_token_id = self.base_tokenizer.encode(' ', add_special_tokens=False)[-1]
        char_start, char_end = 0xAC00, 0xD7A3  # κ°€-힣
        self.kor_chars = list(set([chr(code) for code in range(char_start, char_end + 1)]))
        self.char_3ids = []
        self.char_1ids = []
        for kor_char in self.kor_chars:
            ids = self.base_tokenizer.encode(kor_char, add_special_tokens=False)
            if len(ids)==3:
                self.char_3ids.append(ids)
            else:
                ids = ids+2*[self.base_tokenizer.pad_token_id]
                self.char_1ids.append(ids)
        self.chos = ['γ„±', 'γ„²', 'γ„΄', 'γ„·', 'γ„Έ', 'γ„Ή', 'ㅁ', 'γ…‚', 'γ…ƒ', 'γ……', 'γ…†', 'γ…‡', 'γ…ˆ', 'γ…‰', 'γ…Š', 'γ…‹', 'γ…Œ', 'ㅍ', 'γ…Ž']
        self.joongs = ['ㅏ', 'ㅐ', 'γ…‘', 'γ…’', 'γ…“', 'γ…”', 'γ…•', 'γ…–', 'γ…—', 'γ…˜', 'γ…™', 'γ…š', 'γ…›', 'γ…œ', 'ㅝ', 'γ…ž', 'γ…Ÿ', 'γ… ', 'γ…‘', 'γ…’', 'γ…£']
        self.jongs = [self.base_tokenizer.pad_token, 'γ„±', 'γ„²', 'γ„³', 'γ„΄', 'γ„΅', 'γ„Ά', 'γ„·', 'γ„Ή', 'γ„Ί', 'γ„»', 'γ„Ό', 'γ„½', 'γ„Ύ', 'γ„Ώ', 'γ…€', 'ㅁ', 'γ…‚', 'γ…„', 'γ……', 'γ…†', 'γ…‡', 'γ…ˆ', 'γ…Š', 'γ…‹', 'γ…Œ', 'ㅍ', 'γ…Ž']
        jamos = list(set(self.chos) | set(self.joongs) | set(self.jongs))
        jamo_ids = self.base_tokenizer(jamos, add_special_tokens=False)['input_ids']
        self.jamo_to_id = {jamo: jamo_id[-1] for jamo, jamo_id in zip(jamos, jamo_ids)}
        self.cho_ids = [self.jamo_to_id[cho] for cho in self.chos]
        self.joong_ids = [self.jamo_to_id[joong] for joong in self.joongs]
        self.jong_ids = [self.jamo_to_id[jong] for jong in self.jongs]
        self.id_to_jamo = {jamo_id: jamo for jamo, jamo_id in self.jamo_to_id.items()}

    def encode_jamo(self, sentence):
        encoded_ids = []
        token_type_ids = []
        past_chars = ''
        for char in sentence:
            if char in self.kor_chars:
                if past_chars:
                    past_chars_encoded = self.base_tokenizer.encode(past_chars, add_special_tokens=False)
                    encoded_ids.extend(past_chars_encoded)
                    token_type_ids.extend([0]*len(past_chars_encoded))
                past_chars=''
                char_splitted = list(split_syllables(char))[:3]
                char_splitted = char_splitted + (3-len(char_splitted))*[self.base_tokenizer.pad_token]
                cho, joong, jong = char_splitted
                encoded_ids.extend([self.jamo_to_id[cho], self.jamo_to_id[joong], self.jamo_to_id[jong]])
                token_type_ids.extend([1,2,3])
            else:
                past_chars = past_chars+char
        if past_chars:
            past_chars_encoded = self.base_tokenizer.encode(past_chars, add_special_tokens=False)
            encoded_ids.extend(past_chars_encoded)
            token_type_ids.extend([0]*len(past_chars_encoded))
        return encoded_ids, token_type_ids

    def decode_jamo(self, encoded_ids, token_type_ids):
        encoded_ids = deque(encoded_ids)
        token_type_ids = deque(token_type_ids)
        decoded = []
        past_ids = []
        while len(encoded_ids):
            encoded_id = encoded_ids.popleft()
            token_type_id = token_type_ids.popleft()
            if token_type_id==0:
                past_ids.append(encoded_id)
            else:
                decoded.append(self.base_tokenizer.decode(past_ids))
                past_ids = []
                cho_id = encoded_id
                joong_id = encoded_ids.popleft()
                jong_id = encoded_ids.popleft()
                token_type_ids.popleft()
                token_type_ids.popleft()
                char = join_jamos([self.id_to_jamo[cho_id], self.id_to_jamo[joong_id], self.id_to_jamo[jong_id]])[:1]
                decoded.append(char)
        decoded.append(self.base_tokenizer.decode(past_ids))
        return ''.join(decoded)

    def encode_char(self, sentence):
        encoded_ids = []
        token_type_ids = []
        past_chars = ''
        for char in sentence:
            if char in self.kor_chars:
                if past_chars:
                    past_chars_encoded = self.base_tokenizer.encode(past_chars, add_special_tokens=False)
                    encoded_ids.extend(past_chars_encoded)
                    token_type_ids.extend([0]*len(past_chars_encoded))
                past_chars=''
                encoded_id = self.base_tokenizer.encode(char, add_special_tokens=False)
                encoded_id = encoded_id + (3-len(encoded_id)) * [self.base_tokenizer.pad_token_id]
                encoded_ids.extend(encoded_id)
                token_type_ids.extend([4,4,4])
            else:
                past_chars = past_chars+char
        if past_chars:
            past_chars_encoded = self.base_tokenizer.encode(past_chars, add_special_tokens=False)
            encoded_ids.extend(past_chars_encoded)
            token_type_ids.extend([0]*len(past_chars_encoded))
        return encoded_ids, token_type_ids

    def decode_char(self, encoded_ids, token_type_ids):
        encoded_ids = deque(encoded_ids)
        token_type_ids = deque(token_type_ids)
        decoded = []
        past_ids = []
        while len(encoded_ids):
            encoded_id = encoded_ids.popleft()
            token_type_id = token_type_ids.popleft()
            if token_type_id==0:
                past_ids.append(encoded_id)
            else:
                decoded.append(self.base_tokenizer.decode(past_ids))
                past_ids = []
                id1 = encoded_id
                id2 = encoded_ids.popleft()
                id3 = encoded_ids.popleft()
                token_type_ids.popleft()
                token_type_ids.popleft()
                [id1, id2, id3]
                char = self.base_tokenizer.decode([id1, id2, id3])[:1]
                decoded.append(char)
        decoded.append(self.base_tokenizer.decode(past_ids))
        return ''.join(decoded)

    def encode_jamo_from_char_encoded(self, encoded_ids, token_type_ids):
        encoded_ids = deque(encoded_ids)
        token_type_ids = deque(token_type_ids)
        encoded_ids_new = []
        token_type_ids_new = []
        while len(encoded_ids):
            encoded_id = encoded_ids.popleft()
            token_type_id = token_type_ids.popleft()
            if token_type_id==0:
                encoded_ids_new.append(encoded_id)
                token_type_ids_new.append(token_type_id)
            else:
                encoded_id2 = encoded_ids.popleft()
                encoded_id3 = encoded_ids.popleft()
                token_type_ids.popleft()
                token_type_ids.popleft()
                char = self.base_tokenizer.decode([encoded_id, encoded_id2, encoded_id3])[0]
                char_splitted = list(split_syllables(char))[:3]
                char_splitted = char_splitted + (3-len(char_splitted))*[self.base_tokenizer.pad_token]
                cho, joong, jong = char_splitted
                encoded_ids_new.extend([self.jamo_to_id[cho], self.jamo_to_id[joong], self.jamo_to_id[jong]])
                token_type_ids_new.extend([1,2,3])
        return encoded_ids_new, token_type_ids_new

    def batch_encode_char(self, sentences):
        input_ids = []
        attention_mask = []
        token_type_ids = []
        for sentence in sentences:
            input_ids_row, token_type_id = self.encode_char(sentence)
            input_ids.append(input_ids_row)
            token_type_ids.append(token_type_id)
        max_length = max(list(map(len, input_ids)))
        for i in range(len(sentences)):
            input_ids[i] = input_ids[i] + (max_length-len(input_ids[i])) * [self.base_tokenizer.eos_token_id]
            attention_mask.append([1 if input_id!=self.base_tokenizer.eos_token_id else 0 for input_id in input_ids[i]])
            token_type_ids[i] = token_type_ids[i] + (max_length-len(token_type_ids[i])) * [0]
        return (
            torch.LongTensor(input_ids),
            torch.LongTensor(attention_mask),
            torch.LongTensor(token_type_ids)
        )

    def batch_encode_jamo_from_char_encoded(self, batch_encoded_ids, batch_token_type_ids):
        input_ids = []
        attention_mask = []
        token_type_ids_new = []
        for encoded_ids, token_type_ids in zip(batch_encoded_ids, batch_token_type_ids):
            encoded_ids_row, token_type_ids_row = self.encode_jamo_from_char_encoded(encoded_ids, token_type_ids)
            attention_mask.append([1 if encoded_id!=self.base_tokenizer.eos_token_id else 0 for encoded_id in encoded_ids_row])
            input_ids.append(encoded_ids_row)
            token_type_ids_new.append(token_type_ids_row)
        
        return (
            torch.LongTensor(input_ids),
            torch.LongTensor(attention_mask),
            torch.LongTensor(token_type_ids_new),
        )

    def batch_encode_jamo(self, sentences):
        input_ids = []
        attention_mask = []
        token_type_ids = []
        for sentence in sentences:
            input_ids_row, token_type_id = self.encode_jamo(sentence)
            input_ids.append(input_ids_row)
            token_type_ids.append(token_type_id)
        max_length = max(list(map(len, input_ids)))
        
        for i in range(len(sentences)):
            input_ids[i] = input_ids[i] + (max_length-len(input_ids[i])) * [self.base_tokenizer.eos_token_id]
            attention_mask.append([1 if input_id!=self.base_tokenizer.eos_token_id else 0 for input_id in input_ids[i]])
            token_type_ids[i] = token_type_ids[i] + (max_length-len(token_type_ids[i])) * [0]

        return (
            torch.LongTensor(input_ids),
            torch.LongTensor(attention_mask),
            torch.LongTensor(token_type_ids),
        )